Source code for nvector.objects

"""
Created on 29. des. 2015

@author: pab
"""
from __future__ import division, print_function
import numpy as np
from numpy import deprecate
from numpy.linalg import norm
from geographiclib.geodesic import Geodesic as _Geodesic
from nvector._core import (mdot, select_ellipsoid, rad, deg, zyx2R,
                           lat_lon2n_E, n_E2lat_lon, n_E2R_EN, n_E_and_wa2R_EL,
                           n_EB_E2p_EB_E, p_EB_E2n_EB_E, unit,
                           closest_point_on_great_circle,
                           great_circle_distance, euclidean_distance,
                           cross_track_distance, intersect,
                           mean_horizontal_position,
                           E_rotation, on_great_circle_path)
from nvector import _examples
from nvector._common import test_docstrings, use_docstring_from
import warnings

__all__ = ['FrameE', 'FrameB', 'FrameL', 'FrameN', 'GeoPoint', 'GeoPath',
           'Nvector', 'ECEFvector', 'Pvector', 'diff_positions',
           'delta_E', 'delta_N', 'delta_L']


class _DeltaE(object):
    __doc__ = """
    Return cartesian delta vector from positions A to B decomposed in E.

    Parameters
    ----------
    positionA, positionB: Nvector, GeoPoint or ECEFvector objects
        position A and B, decomposed in E.

    Returns
    -------
    p_AB_E:  ECEFvector
        Cartesian position vector(s) from A to B, decomposed in E.

    Notes
    -----
    The calculation is excact, taking the ellipsity of the Earth into account.
    It is also non-singular as both n-vector and p-vector are non-singular
    (except for the center of the Earth).

    Examples
    --------

    {0}

    See also
    --------
    n_EA_E_and_p_AB_E2n_EB_E,
    p_EB_E2n_EB_E,
    n_EB_E2p_EB_E.
    """.format(_examples.get_examples([1]))


@use_docstring_from(_DeltaE)
def delta_E(positionA, positionB):
    # Function 1. in Section 5.4 in Gade (2010):
    p_EA_E = positionA.to_ecef_vector()
    p_EB_E = positionB.to_ecef_vector()
    p_AB_E = -p_EA_E + p_EB_E
    return p_AB_E


@deprecate
def diff_positions(positionA, positionB):
    """Deprecated use delta_E instead.
    """
    return delta_E(positionA, positionB)


def delta_N(positionA, positionB):
    """Return cartesian delta vector from positions A to B decomposed in N.

    Parameters
    ----------
    positionA, positionB: Nvector, GeoPoint or ECEFvector objects
        position A and B, decomposed in E.

    See also
    --------
    delta_E
    """
    p_AB_E = delta_E(positionA, positionB)
    p_AB_N = p_AB_E.change_frame(FrameN(positionA))
    return p_AB_N


def _delta(self, other):
    """Return cartesian delta vector from positions A to B decomposed in N."""
    return delta_N(self, other)


def delta_L(positionA, positionB, wander_azimuth=0):
    """Return cartesian delta vector from positions A to B decomposed in L.

    Parameters
    ----------
    positionA, positionB: Nvector, GeoPoint or ECEFvector objects
        position A and B, decomposed in E.
    wander_azimuth: real scalar
        Angle [rad] between the x-axis of L and the north direction.

    See also
    --------
    delta_E
    """
    p_AB_E = delta_E(positionA, positionB)
    p_AB_L = p_AB_E.change_frame(FrameL(positionA,
                                        wander_azimuth=wander_azimuth))
    return p_AB_L


[docs]class GeoPoint(object): """ Geographical position given as latitude, longitude, depth in frame E Parameters ---------- latitude, longitude: real scalars or vectors of length n. Geodetic latitude and longitude given in [rad or deg] z: real scalar or vector of length n. Depth(s) [m] relative to the ellipsoid (depth = -height) frame: FrameE object reference ellipsoid. The default ellipsoid model used is WGS84, but other ellipsoids/spheres might be specified. degrees: bool True if input are given in degrees otherwise radians are assumed. Examples -------- Solve geodesic problems. The following illustrates its use >>> import nvector as nv >>> wgs84 = nv.FrameE(name='WGS84') The geodesic inverse problem >>> positionA = wgs84.GeoPoint(-41.32, 174.81, degrees=True) >>> positionB = wgs84.GeoPoint(40.96, -5.50, degrees=True) >>> s12, az1, az2 = positionA.distance_and_azimuth(positionB, degrees=True) >>> 's12 = {:5.2f}, az1 = {:5.2f}, az2 = {:5.2f}'.format(s12, az1, az2) 's12 = 19959679.27, az1 = 161.07, az2 = 18.83' The geodesic direct problem >>> positionA = wgs84.GeoPoint(40.6, -73.8, degrees=True) >>> az1, distance = 45, 10000e3 >>> positionB, az2 = positionA.displace(distance, az1, degrees=True) >>> lat2, lon2 = positionB.latitude_deg, positionB.longitude_deg >>> msg = 'lat2 = {:5.2f}, lon2 = {:5.2f}, az2 = {:5.2f}' >>> msg.format(lat2, lon2, az2) 'lat2 = 32.64, lon2 = 49.01, az2 = 140.37' """
[docs] def __init__(self, latitude, longitude, z=0, frame=None, degrees=False): if degrees: latitude, longitude = rad(latitude), rad(longitude) self.latitude = latitude self.longitude = longitude self.z = z self.frame = _default_frame(frame)
@property def latlon_deg(self): return self.latitude_deg, self.longitude_deg, self.z @property def latlon(self): return self.latitude, self.longitude, self.z @property def latitude_deg(self): return deg(self.latitude) @property def longitude_deg(self): return deg(self.longitude) def to_ecef_vector(self): """ Converts latitude and longitude to ECEF-vector. """ return self.to_nvector().to_ecef_vector() def to_geo_point(self): """Return geo-point""" return self def to_nvector(self): """ Converts latitude and longitude to n-vector. Parameters ---------- latitude, longitude: real scalars or vectors of length n. Geodetic latitude and longitude given in [rad] Returns ------- n_E: 3 x n array n-vector(s) [no unit] decomposed in E. See also -------- n_E2lat_lon. """ latitude, longitude = self.latitude, self.longitude n_E = lat_lon2n_E(latitude, longitude, self.frame.R_Ee) return Nvector(n_E, self.z, self.frame) delta_to = _delta def displace(self, distance, azimuth, long_unroll=False, degrees=False): """ Return position B computed from current position, distance and azimuth. Parameters ---------- distance: real scalar ellipsoidal distance [m] between position A and B. azimuth_a: azimuth [rad or deg] of line at position A. degrees: bool azimuths are given in degrees if True otherwise in radians. Returns ------- point_b: GeoPoint object latitude and longitude of position B. azimuth_b azimuth [rad or deg] of line at position B. """ frame = self.frame z = self.z if not degrees: azimuth = deg(azimuth) lat_a, lon_a = self.latitude_deg, self.longitude_deg latb, lonb, azimuth_b = frame.direct(lat_a, lon_a, azimuth, distance, z=z, long_unroll=long_unroll, degrees=True) if not degrees: azimuth_b = rad(azimuth_b) point_b = frame.GeoPoint(latitude=latb, longitude=lonb, z=z, degrees=True) return point_b, azimuth_b def distance_and_azimuth(self, point, long_unroll=False, degrees=False): """ Return ellipsoidal distance between positions as well as the direction. Parameters ---------- point: GeoPoint object Latitude and longitude of position B. degrees: bool azimuths are returned in degrees if True otherwise in radians. Returns ------- s_ab: real scalar ellipsoidal distance [m] between position A and B. azimuth_a, azimuth_b direction [rad or deg] of line at position A and B relative to North, respectively. """ _check_frames(self, point) gpoint = point.to_geo_point() lat_a, lon_a = self.latitude, self.longitude lat_b, lon_b = gpoint.latitude, gpoint.longitude z = 0.5 * (self.z + gpoint.z) if not np.allclose(self.z, gpoint.z): warnings.warn('Depths differ. Calculating distance at average ' 'depth={}'.format(str(z))) if degrees: lat_a, lon_a, lat_b, lon_b = deg((lat_a, lon_a, lat_b, lon_b)) return self.frame.inverse(lat_a, lon_a, lat_b, lon_b, z=z, long_unroll=long_unroll, degrees=degrees)
class _Common(object): def __eq__(self, other): try: return self is other or self._is_equal_to(other, rtol=1e-12, atol=1e-14) except AttributeError: return False def __ne__(self, other): return not self.__eq__(other)
[docs]class Nvector(_Common): """ Geographical position given as n-vector and depth in frame E Parameters ---------- normal: 3 x n array n-vector(s) [no unit] decomposed in E. z: real scalar or vector of length n. Depth(s) [m] relative to the ellipsoid (depth = -height) frame: FrameE object reference ellipsoid. The default ellipsoid model used is WGS84, but other ellipsoids/spheres might be specified. Notes ----- The position of B (typically body) relative to E (typically Earth) is given into this function as n-vector, n_EB_E and a depth, z relative to the ellipsiod. See also -------- GeoPoint, ECEFvector, Pvector """
[docs] def __init__(self, normal, z=0, frame=None): self.normal = normal self.z = z self.frame = _default_frame(frame)
def to_ecef_vector(self): """ Converts n-vector to Cartesian position vector ("ECEF-vector") Returns ------- p_EB_E: ECEFvector object Cartesian position vector(s) from E to B, decomposed in E. The calculation is excact, taking the ellipsity of the Earth into account. It is also non-singular as both n-vector and p-vector are non-singular (except for the center of the Earth). See also -------- n_EB_E2p_EB_E, ECEFvector, Pvector, GeoPoint """ frame = self.frame n_EB_E = self.normal a, f, R_Ee = frame.a, frame.f, frame.R_Ee p_EB_E = n_EB_E2p_EB_E(n_EB_E, depth=self.z, a=a, f=f, R_Ee=R_Ee) return ECEFvector(p_EB_E, self.frame) def to_geo_point(self): """ Converts n-vector to geo-point. See also -------- n_E2lat_lon, GeoPoint, ECEFvector, Pvector """ n_E = self.normal latitude, longitude = n_E2lat_lon(n_E, R_Ee=self.frame.R_Ee) return GeoPoint(latitude, longitude, self.z, self.frame) def to_nvector(self): return self delta_to = _delta def unit(self): """Normalizes self to unit vector(s)""" self.normal = unit(self.normal) @deprecate def mean_horizontal_position(self): """Deprecated. Use mean instead""" return self.mean() def mean(self): """ Return mean position of the n-vectors. """ n_EB_E = self.normal n_EM_E = mean_horizontal_position(n_EB_E) return self.frame.Nvector(n_EM_E, z=np.mean(self.z)) def _is_equal_to(self, other, rtol=1e-12, atol=1e-14): options = dict(rtol=rtol, atol=atol) return (np.allclose(self.normal, other.normal, **options) and np.allclose(self.z, other.z, **options) and self.frame == other.frame) def __add__(self, other): _check_frames(self, other) return self.frame.Nvector(self.normal + other.normal, self.z + other.z) def __sub__(self, other): _check_frames(self, other) return self.frame.Nvector(self.normal - other.normal, self.z - other.z) def __neg__(self): return self.frame.Nvector(-self.normal, -self.z) def __mul__(self, scalar): """elementwise multiplication""" if not isinstance(scalar, Nvector): return self.frame.Nvector(self.normal * scalar, self.z * scalar) raise NotImplementedError('Only scalar multiplication is implemented') def __div__(self, scalar): """elementwise division""" if not isinstance(scalar, Nvector): return self.frame.Nvector(self.normal / scalar, self.z / scalar) raise NotImplementedError('Only scalar division is implemented') __truediv__ = __div__ __radd__ = __add__ __rmul__ = __mul__
[docs]class Pvector(object): """ Cartesian position vector in another frame """
[docs] def __init__(self, pvector, frame): self.pvector = pvector self.frame = frame
def to_ecef_vector(self): n_frame = self.frame p_AB_N = self.pvector # p_AB_E = np.dot(n_frame.R_EN, p_AB_N) p_AB_E = mdot(n_frame.R_EN, p_AB_N[:, None, ...]).reshape(3, -1) return ECEFvector(p_AB_E, frame=n_frame.nvector.frame) def to_nvector(self): return self.to_ecef_vector().to_nvector() def to_geo_point(self): return self.to_ecef_vector().to_geo_point() delta_to = _delta @property def length(self): return norm(self.pvector, axis=0) @property def azimuth_deg(self): return deg(self.azimuth) @property def azimuth(self): p_AB_N = self.pvector return np.arctan2(p_AB_N[1], p_AB_N[0]) @property def elevation_deg(self): return deg(self.elevation) @property def elevation(self): z = self.pvector[2] return np.arcsin(z / self.length)
[docs]class ECEFvector(Pvector): __doc__ = """ Geographical position given as Cartesian position vector in frame E Parameters ---------- pvector: 3 x n array Cartesian position vector(s) [m] from E to B, decomposed in E. frame: FrameE object reference ellipsoid. The default ellipsoid model used is WGS84, but other ellipsoids/spheres might be specified. Notes ----- The position of B (typically body) relative to E (typically Earth) is given into this function as p-vector, p_EB_E relative to the center of the frame. Examples -------- {0} See also -------- GeoPoint, ECEFvector, Pvector """.format(_examples.get_examples([3, 4]))
[docs] def __init__(self, pvector, frame=None): super(ECEFvector, self).__init__(pvector, _default_frame(frame))
def change_frame(self, frame): """ Converts to Cartesian position vector in another frame Parameters ---------- frame: FrameB, FrameN or frameL object local frame M used to convert p_AB_E (position vector from A to B, decomposed in E) to a cartesian vector p_AB_M decomposed in M. Returns ------- p_AB_M: Pvector object position vector from A to B, decomposed in frame M. See also -------- n_EB_E2p_EB_E, n_EA_E_and_p_AB_E2n_EB_E, n_EA_E_and_n_EB_E2p_AB_E. """ _check_frames(self, frame.nvector) p_AB_E = self.pvector p_AB_N = mdot(np.rollaxis(frame.R_EN, 1, 0), p_AB_E[:, None, ...]) return Pvector(p_AB_N.reshape(3, -1), frame=frame) def to_ecef_vector(self): return self def to_geo_point(self): """ Converts ECEF-vector to geo-point. Returns ------- point: GeoPoint object containing geodetic latitude and longitude given in [rad or deg] and depth, z, relative to the ellipsoid (depth = -height). See also -------- n_E2lat_lon, n_EB_E2p_EB_E, GeoPoint, Nvector, ECEFvector, Pvector """ return self.to_nvector().to_geo_point() def to_nvector(self): """ Converts ECEF-vector to n-vector. Returns ------- n_EB_E: Nvector object n-vector(s) [no unit] of position B, decomposed in E. Notes ----- The calculation is excact, taking the ellipsity of the Earth into account. It is also non-singular as both n-vector and p-vector are non-singular (except for the center of the Earth). See also -------- n_EB_E2p_EB_E, Nvector """ frame = self.frame p_EB_E = self.pvector R_Ee = frame.R_Ee n_EB_E, depth = p_EB_E2n_EB_E(p_EB_E, a=frame.a, f=frame.f, R_Ee=R_Ee) return Nvector(n_EB_E, z=depth, frame=frame) delta_to = _delta def __add__(self, other): _check_frames(self, other) return ECEFvector(self.pvector + other.pvector, self.frame) def __sub__(self, other): _check_frames(self, other) return ECEFvector(self.pvector - other.pvector, self.frame) def __neg__(self): return ECEFvector(-self.pvector, self.frame)
[docs]class GeoPath(object): __doc__ = """ Geographical path between two positions in Frame E Parameters ---------- positionA, positionB: Nvector, GeoPoint or ECEFvector objects The path is defined by the line between position A and B, decomposed in E. Examples -------- {0} """.format(_examples.get_examples([5, 6, 9, 10]))
[docs] def __init__(self, positionA, positionB): self.positionA = positionA self.positionB = positionB
def nvectors(self): """ Return positionA and positionB as n-vectors """ return self.positionA.to_nvector(), self.positionB.to_nvector() def geo_points(self): """ Return positionA and positionB as geo-points """ return self.positionA.to_geo_point(), self.positionB.to_geo_point() def ecef_vectors(self): """ Return positionA and positionB as ECEF-vectors """ return self.positionA.to_ecef_vector(), self.positionB.to_ecef_vector() def nvector_normals(self): n_EA_E, n_EB_E = self.nvectors() return n_EA_E.normal, n_EB_E.normal def _get_average_radius(self): # n1 = self.positionA.to_nvector() # n2 = self.positionB.to_nvector() # n_EM_E = mean_horizontal_position(np.hstack((n1.normal, n2.normal))) # p_EM_E = n1.frame.Nvector(n_EM_E).to_ecef_vector() # radius = norm(p_EM_E.pvector, axis=0) # radius = (norm(p_E1_E.pvector, axis=0) + # norm(p_E2_E.pvector, axis=0)) / 2 p_E1_E, p_E2_E = self.ecef_vectors() radius = (p_E1_E.length + p_E2_E.length) / 2 return radius def cross_track_distance(self, point, method='greatcircle', radius=None): """ Return cross track distance from path to point. Parameters ---------- point: GeoPoint, Nvector or ECEFvector object position to measure the cross track distance to. radius: real scalar radius of sphere in [m]. Default mean Earth radius method: string defining distance calculated. Options are: 'greatcircle' or 'euclidean' Returns ------- distance: real scalar distance in [m] """ if radius is None: radius = self._get_average_radius() path = self.nvector_normals() n_c = point.to_nvector().normal return cross_track_distance(path, n_c, method=method, radius=radius) def track_distance(self, method='greatcircle', radius=None): """ Return the distance of the path. Parameters ---------- method: string 'greatcircle': 'euclidean' 'exact' radius: real scalar radius of sphere """ if method == 'exact': point_a, point_b = self.geo_points() s_ab, _angle1, _angle2 = point_a.distance_and_azimuth(point_b) return s_ab if radius is None: radius = self._get_average_radius() n_EA_E, n_EB_E = self.nvector_normals() if method[:2] == "eu": return euclidean_distance(n_EA_E, n_EB_E, radius) return great_circle_distance(n_EA_E, n_EB_E, radius) @deprecate def intersection(self, path): """ Deprecated use intersect instead """ return self.intersect(path) def intersect(self, path): """ Return the intersection(s) between the great circles of the two paths Parameters ---------- path: GeoPath object path to intersect Returns ------- point: GeoPoint point of intersection between paths """ frame = self.positionA.frame path_a = self.nvector_normals() path_b = path.nvector_normals() n_EC_E = intersect(path_a, path_b) return frame.Nvector(n_EC_E) def _on_ellipsoid_path(self, point, rtol=1e-6, atol=1e-8): point_a, point_b = self.geo_points() distanceAB, azimuth_ab, _azi_ba = point_a.distance_and_azimuth(point_b) distanceAC, azimuth_ac, _azi_ca = point_a.distance_and_azimuth(point) return distanceAB >= distanceAC and np.allclose(azimuth_ab, azimuth_ac, rtol=rtol, atol=atol) def on_great_circle(self, point, rtol=1e-6, atol=1e-8): distance = np.abs(self.cross_track_distance(point)) return np.isclose(distance, 0, rtol, atol) def _on_great_circle_path(self, point, radius=None, rtol=1e-6, atol=1e-8): if radius is None: radius = self._get_average_radius() path = self.nvector_normals() point_c = point.to_nvector().normal return on_great_circle_path(path, point_c, radius, rtol, atol) # pointA, pointB = path # p_ba = pointB - pointA # p_ca = point_c - pointA # is_parallell = np.all(np.isclose(np.cross(p_ba, p_ca, axis=0), 0, # rtol, atol), axis=0) # same_direction = (np.all(np.sign(np.dot(p_ba.T, p_ca)) == 1, axis=0) & # np.all(np.sign(p_ba) == np.sign(p_ca), axis=0)) # return (is_parallell & same_direction & # norm(p_ba, axis=0) >= norm(p_ca, axis=0)) def on_path(self, point, method='greatcircle', rtol=1e-6, atol=1e-8): """ Return True if point is on the path between A and B Parameters ---------- point : Nvector, GeoPoint or ECEFvector point to test method: string 'greatcircle': 'exact' Examples -------- >>> import nvector as nv >>> wgs84 = nv.FrameE(name='WGS84') >>> pointA = wgs84.GeoPoint(89, 0, degrees=True) >>> pointB = wgs84.GeoPoint(80, 0, degrees=True) >>> path = nv.GeoPath(pointA, pointB) >>> pointC = path.interpolate(0.6).to_geo_point() >>> np.allclose(path.on_path(pointC), True) True >>> pointD = path.interpolate(1.000000001).to_geo_point() >>> np.allclose(path.on_path(pointD), False) True >>> pointE = wgs84.GeoPoint(85, 0.0001, degrees=True) >>> np.allclose(path.on_path(pointE), False) True >>> pointC = path.interpolate(-2).to_geo_point() >>> np.allclose(path.on_path(pointC), False) True >>> path = nv.GeoPath(pointC, pointA) """ if method == 'exact': return self._on_ellipsoid_path(point, rtol=rtol, atol=atol) return self._on_great_circle_path(point, rtol=rtol, atol=atol) def closest_point_on_great_circle(self, point): nvector = point.to_nvector() path = self.nvector_normals() n = closest_point_on_great_circle(path, nvector.normal) return nvector.frame.Nvector(n, nvector.z).to_geo_point() def closest_point_on_path(self, point): """ Returns closest point on great circle path segment to the point. If the point is within the extent of the segment, the point returned is on the segment path otherwise, it is the closest endpoint defining the path segment. Parameters ---------- point: GeoPoint point of intersection between paths Returns ------- closest_point: GeoPoint closest point on path segment. Example ------- >>> import nvector as nv >>> wgs84 = nv.FrameE(name='WGS84') >>> pointA = wgs84.GeoPoint(51., 1., degrees=True) >>> pointB = wgs84.GeoPoint(51., 2., degrees=True) >>> pointC = wgs84.GeoPoint(51., 1.9, degrees=True) >>> path = nv.GeoPath(pointA, pointB) >>> point = path.closest_point_on_path(pointC) >>> np.allclose((point.latitude_deg, point.longitude_deg), ... ([51.00038411380564], [1.900003311624411])) True >>> np.allclose(GeoPath(pointC, point).track_distance(), 42.67368351) True >>> pointD = wgs84.GeoPoint(51.0, 2.1, degrees=True) >>> pointE = path.closest_point_on_path(pointD) # 51.0000, 002.0000 >>> pointE.latitude_deg, pointE.longitude_deg (51.0, 2.0) """ point_c = self.closest_point_on_great_circle(point) if self.on_path(point_c): return point_c n0 = point.to_nvector().normal n1, n2 = self.nvector_normals() radius = self._get_average_radius() d1 = great_circle_distance(n1, n0, radius) d2 = great_circle_distance(n2, n0, radius) if d1 < d2: return self.positionA.to_geo_point() return self.positionB.to_geo_point() def interpolate(self, ti): """ Return the interpolated point along the path Parameters ---------- ti: real scalar interpolation time assuming position A and B is at t0=0 and t1=1, respectively. Returns ------- point: Nvector point of interpolation along path """ point_a, point_b = self.nvectors() point_c = point_a + (point_b - point_a) * ti point_c.normal = unit(point_c.normal, norm_zero_vector=np.nan) return point_c
[docs]class FrameE(_Common): """ Earth-fixed frame Parameters ---------- a: real scalar, default WGS-84 ellipsoid. Semi-major axis of the Earth ellipsoid given in [m]. f: real scalar, default WGS-84 ellipsoid. Flattening [no unit] of the Earth ellipsoid. If f==0 then spherical Earth with radius a is used in stead of WGS-84. name: string defining the default ellipsoid. axes: 'e' or 'E' defines axes orientation of E frame. Default is axes='e' which means that the orientation of the axis is such that: z-axis -> North Pole, x-axis -> Latitude=Longitude=0. Notes ----- The frame is Earth-fixed (rotates and moves with the Earth) where the origin coincides with Earth's centre (geometrical centre of ellipsoid model). See also -------- FrameN, FrameL, FrameB """
[docs] def __init__(self, a=None, f=None, name='WGS84', axes='e'): if a is None or f is None: a, f, _full_name = select_ellipsoid(name) self.a = a self.f = f self.name = name self.R_Ee = E_rotation(axes)
def _is_equal_to(self, other, rtol=1e-12, atol=1e-14): return (np.allclose(self.a, other.a, rtol=rtol, atol=atol) and np.allclose(self.f, other.f, rtol=rtol, atol=atol) and np.allclose(self.R_Ee, other.R_Ee, rtol=rtol, atol=atol)) def inverse(self, lat_a, lon_a, lat_b, lon_b, z=0, long_unroll=False, degrees=False): """ Return ellipsoidal distance between positions as well as the direction. Parameters ---------- lat_a, lon_a: real scalars Latitude and longitude of position a. lat_b, lon_b: real scalars Latitude and longitude of position b. z : real scalar depth relative to Earth ellipsoid. degrees: bool angles are given in degrees if True otherwise in radians. Returns ------- s_ab: real scalar ellipsoidal distance [m] between position A and B. azimuth_a, azimuth_b direction [rad or deg] of line at position A and B relative to North, respectively. References ---------- C. F. F. Karney, Algorithms for geodesics, J. Geodesy 87(1), 43-55 `geographiclib <https://pypi.python.org/pypi/geographiclib>`_ """ outmask = _Geodesic.STANDARD if long_unroll: outmask = _Geodesic.STANDARD | _Geodesic.LONG_UNROLL geo = _Geodesic(self.a - z, self.f) if not degrees: lat_a, lon_a, lat_b, lon_b = [deg(val) for val in (lat_a, lon_a, lat_b, lon_b)] result = geo.Inverse(lat_a, lon_a, lat_b, lon_b, outmask=outmask) azimuth_a = result['azi1'] if degrees else rad(result['azi1']) azimuth_b = result['azi2'] if degrees else rad(result['azi2']) return result['s12'], azimuth_a, azimuth_b def direct(self, lat_a, lon_a, azimuth, distance, z=0, long_unroll=False, degrees=False): """ Return position B computed from position A, distance and azimuth. Parameters ---------- lat_a, lon_a: real scalars Latitude and longitude [rad or deg] of position a. azimuth_a: azimuth [rad or deg] of line at position A. distance: real scalar ellipsoidal distance [m] between position A and B. z : real scalar depth relative to Earth ellipsoid. degrees: bool angles are given in degrees if True otherwise in radians. Returns ------- lat_b, lon_b: real scalars Latitude and longitude of position b. azimuth_b azimuth [rad or deg] of line at position B. References ---------- C. F. F. Karney, Algorithms for geodesics, J. Geodesy 87(1), 43-55 `geographiclib <https://pypi.python.org/pypi/geographiclib>`_ """ geo = _Geodesic(self.a - z, self.f) outmask = _Geodesic.STANDARD if long_unroll: outmask = _Geodesic.STANDARD | _Geodesic.LONG_UNROLL if not degrees: lat_a, lon_a, azimuth = deg((lat_a, lon_a, azimuth)) result = geo.Direct(lat_a, lon_a, azimuth, distance, outmask=outmask) latb, lonb, azimuth_b = result['lat2'], result['lon2'], result['azi2'] if not degrees: return rad(latb), rad(lonb), rad(azimuth_b) return latb, lonb, azimuth_b @use_docstring_from(GeoPoint) def GeoPoint(self, *args, **kwds): kwds.pop('frame', None) return GeoPoint(*args, frame=self, **kwds) @use_docstring_from(Nvector) def Nvector(self, *args, **kwds): kwds.pop('frame', None) return Nvector(*args, frame=self, **kwds) @use_docstring_from(ECEFvector) def ECEFvector(self, *args, **kwds): kwds.pop('frame', None) return ECEFvector(*args, frame=self, **kwds)
[docs]class FrameN(_Common): __doc__ = """ North-East-Down frame Parameters ---------- position: ECEFvector, GeoPoint or Nvector object position of the vehicle (B) which also defines the origin of the local frame N. The origin is directly beneath or above the vehicle (B), at Earth's surface (surface of ellipsoid model). Notes ----- The Cartesian frame is local and oriented North-East-Down, i.e., the x-axis points towards north, the y-axis points towards east (both are horizontal), and the z-axis is pointing down. When moving relative to the Earth, the frame rotates about its z-axis to allow the x-axis to always point towards north. When getting close to the poles this rotation rate will increase, being infinite at the poles. The poles are thus singularities and the direction of the x- and y-axes are not defined here. Hence, this coordinate frame is NOT SUITABLE for general calculations. Examples -------- {0} See also -------- FrameE, FrameL, FrameB """.format(_examples.get_examples([1]))
[docs] def __init__(self, position): nvector = position.to_nvector() self.nvector = Nvector(nvector.normal, z=0, frame=nvector.frame)
@property def R_EN(self): nvector = self.nvector return n_E2R_EN(nvector.normal, nvector.frame.R_Ee) def _is_equal_to(self, other, rtol=1e-12, atol=1e-14): return (np.allclose(self.R_EN, other.R_EN, rtol=rtol, atol=atol) and self.nvector == other.nvector) def Pvector(self, pvector): return Pvector(pvector, frame=self)
[docs]class FrameL(FrameN): """ Local level, Wander azimuth frame Parameters ---------- position: ECEFvector, GeoPoint or Nvector object position of the vehicle (B) which also defines the origin of the local frame L. The origin is directly beneath or above the vehicle (B), at Earth's surface (surface of ellipsoid model). wander_azimuth: real scalar Angle [rad] between the x-axis of L and the north direction. Notes ----- The Cartesian frame is local and oriented Wander-azimuth-Down. This means that the z-axis is pointing down. Initially, the x-axis points towards north, and the y-axis points towards east, but as the vehicle moves they are not rotating about the z-axis (their angular velocity relative to the Earth has zero component along the z-axis). (Note: Any initial horizontal direction of the x- and y-axes is valid for L, but if the initial position is outside the poles, north and east are usually chosen for convenience.) The L-frame is equal to the N-frame except for the rotation about the z-axis, which is always zero for this frame (relative to E). Hence, at a given time, the only difference between the frames is an angle between the x-axis of L and the north direction; this angle is called the wander azimuth angle. The L-frame is well suited for general calculations, as it is non-singular. See also -------- FrameE, FrameN, FrameB """
[docs] def __init__(self, position, wander_azimuth=0): super(FrameL, self).__init__(position) self.wander_azimuth = wander_azimuth
@property def R_EN(self): n_EA_E = self.nvector.normal R_Ee = self.nvector.frame.R_Ee return n_E_and_wa2R_EL(n_EA_E, self.wander_azimuth, R_Ee=R_Ee)
[docs]class FrameB(FrameN): __doc__ = """ Body frame Parameters ---------- position: ECEFvector, GeoPoint or Nvector object position of the vehicle's reference point which also coincides with the origin of the frame B. yaw, pitch, roll: real scalars defining the orientation of frame B in [deg] or [rad]. degrees : bool if True yaw, pitch, roll are given in degrees otherwise in radians Notes ----- The frame is fixed to the vehicle where the x-axis points forward, the y-axis to the right (starboard) and the z-axis in the vehicle's down direction. Examples -------- {0} See also -------- FrameE, FrameL, FrameN """.format(_examples.get_examples([2]))
[docs] def __init__(self, position, yaw=0, pitch=0, roll=0, degrees=False): self.nvector = position.to_nvector() if degrees: yaw, pitch, roll = rad(yaw), rad(pitch), rad(roll) self.yaw = yaw self.pitch = pitch self.roll = roll
@property def R_EN(self): R_NB = zyx2R(self.yaw, self.pitch, self.roll) n_EB_E = self.nvector.normal R_EN = n_E2R_EN(n_EB_E, self.nvector.frame.R_Ee) return mdot(R_EN, R_NB) # rotation matrix def _is_equal_to(self, other, rtol=1e-12, atol=1e-14): return (np.allclose(self.yaw, other.yaw, rtol=rtol, atol=atol) and np.allclose(self.pitch, other.pitch, rtol=rtol, atol=atol) and np.allclose(self.roll, other.roll, rtol=rtol, atol=atol) and np.allclose(self.R_EN, other.R_EN, rtol=rtol, atol=atol) and self.nvector == other.nvector)
def _check_frames(self, other): if not self.frame == other.frame: raise ValueError('Frames are unequal') def _default_frame(frame): if frame is None: return FrameE() return frame if __name__ == "__main__": test_docstrings(__file__)