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Introduction to Nvector
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Nvector is a suite of tools written in Python to solve geographical position
calculations like:


	Calculate the surface distance between two geographical positions.

	Convert positions given in one reference frame into another reference frame.

	Find the destination point given start point, azimuth/bearing and distance.

	Find the mean position (center/midpoint) of several geographical positions.

	Find the intersection between two paths.

	Find the cross track distance between a path and a position.






Description

In this library, we represent position with an “n-vector”,  which
is the normal vector to the Earth model (the same reference ellipsoid that is
used for latitude and longitude). When using n-vector, all Earth-positions are
treated equally, and there is no need to worry about singularities or
discontinuities. An additional benefit with using n-vector is that many
position calculations can be solved with simple vector algebra
(e.g. dot product and cross product).

Converting between n-vector and latitude/longitude is unambiguous and easy
using the provided functions.

n_E is n-vector in the program code, while in documents we use nE. E denotes
an Earth-fixed coordinate frame, and it indicates that the three components of
n-vector are along the three axes of E. More details about the notation and
reference frames can be found here:




Documentation and code

Official documentation:

http://www.navlab.net/nvector/

http://nvector.readthedocs.io/en/latest/


	Kenneth Gade (2010):

	A Nonsingular Horizontal Position Representation,
The Journal of Navigation, Volume 63, Issue 03, pp 395-417, July 2010. [http://www.navlab.net/Publications/A_Nonsingular_Horizontal_Position_Representation.pdf]



Bleeding edge: https://github.com/pbrod/nvector.

Official releases available at: http://pypi.python.org/pypi/nvector.




Installation

If you have pip installed and are online, then simply type:


$ pip install nvector


to get the lastest stable version. Using pip also has the advantage that all
requirements are automatically installed.

You can download nvector and all dependencies to a folder “pkg”, by the following:


$ pip install –download=pkg nvector


To install the downloaded nvector, just type:


$ pip install –no-index –find-links=pkg nvector





Unit tests

To test if the toolbox is working paste the following in an interactive
python session:

import nvector as nv
nv.test(coverage=True, doctests=True)








Acknowledgement

The nvector package [http://pypi.python.org/pypi/nvector/] for
Python [https://www.python.org/] was written by Per A. Brodtkorb at
FFI (The Norwegian Defence Research Establishment) [http://www.ffi.no/en]
based on the nvector toolbox [http://www.navlab.net/nvector/#download] for
Matlab [http://www.mathworks.com] written by the navigation group at
FFI [http://www.ffi.no/en].

Most of the content is based on the following article:


	Kenneth Gade (2010):

	A Nonsingular Horizontal Position Representation,
The Journal of Navigation, Volume 63, Issue 03, pp 395-417, July 2010. [http://www.navlab.net/Publications/A_Nonsingular_Horizontal_Position_Representation.pdf]



Thus this article should be cited in publications using this page or the
downloaded program code.




Getting Started

Below the object-oriented solution to some common geodesic problems are given.
In the first example the functional solution is also given.
The functional solutions to the remaining problems can be found
here [https://github.com/pbrod/nvector/blob/master/nvector/tests/test_nvector.py].


Example 1: “A and B to delta”

[image: http://www.navlab.net/images/ex1img.png]
Given two positions, A and B as latitudes, longitudes and depths relative to
Earth, E.

Find the exact vector between the two positions, given in meters north, east,
and down, and find the direction (azimuth) to B, relative to north.
Assume WGS-84 ellipsoid. The given depths are from the ellipsoid surface.
Use position A to define north, east, and down directions.
(Due to the curvature of Earth and different directions to the North Pole,
the north, east, and down directions will change (relative to Earth) for
different places.  A must be outside the poles for the north and east
directions to be defined.)


	Solution:

	>>> import numpy as np
>>> import nvector as nv
>>> wgs84 = nv.FrameE(name='WGS84')
>>> pointA = wgs84.GeoPoint(latitude=1, longitude=2, z=3, degrees=True)
>>> pointB = wgs84.GeoPoint(latitude=4, longitude=5, z=6, degrees=True)







	Step 1: Find p_AB_E (delta decomposed in E).

	>>> p_AB_E = nv.diff_positions(pointA, pointB)







	Step 2: Find p_AB_N (delta decomposed in N).

	>>> frame_N = nv.FrameN(pointA)
>>> p_AB_N = p_AB_E.change_frame(frame_N)
>>> p_AB_N = p_AB_N.pvector.ravel()
>>> valtxt = '{0:8.2f}, {1:8.2f}, {2:8.2f}'.format(*p_AB_N)
>>> 'Ex1: delta north, east, down = {}'.format(valtxt)
'Ex1: delta north, east, down = 331730.23, 332997.87, 17404.27'







	Step3: Also find the direction (azimuth) to B, relative to north:

	>>> azimuth = np.arctan2(p_AB_N[1], p_AB_N[0])
>>> 'azimuth = {0:4.2f} deg'.format(np.rad2deg(azimuth))
'azimuth = 45.11 deg'







	Functional Solution:

	>>> import numpy as np
>>> import nvector as nv
>>> from nvector import rad, deg





>>> lat_EA, lon_EA, z_EA = rad(1), rad(2), 3
>>> lat_EB, lon_EB, z_EB = rad(4), rad(5), 6







	Step1: Convert to n-vectors:

	>>> n_EA_E = nv.lat_lon2n_E(lat_EA, lon_EA)
>>> n_EB_E = nv.lat_lon2n_E(lat_EB, lon_EB)







	Step2: Find p_AB_E (delta decomposed in E).WGS-84 ellipsoid is default:

	>>> p_AB_E = nv.n_EA_E_and_n_EB_E2p_AB_E(n_EA_E, n_EB_E, z_EA, z_EB)







	Step3: Find R_EN for position A:

	>>> R_EN = nv.n_E2R_EN(n_EA_E)







	Step4: Find p_AB_N (delta decomposed in N).

	>>> p_AB_N = np.dot(R_EN.T, p_AB_E).ravel()
>>> valtxt = '{0:8.2f}, {1:8.2f}, {2:8.2f}'.format(*p_AB_N)
>>> 'Ex1: delta north, east, down = {}'.format(valtxt)
'Ex1: delta north, east, down = 331730.23, 332997.87, 17404.27'







	Step5: Also find the direction (azimuth) to B, relative to north:

	>>> azimuth = np.arctan2(p_AB_N[1], p_AB_N[0])
>>> 'azimuth = {0:4.2f} deg'.format(deg(azimuth))
'azimuth = 45.11 deg'







	See also

	Example 1 at www.navlab.net [http://www.navlab.net/nvector/#example_1]






Example 2: “B and delta to C”

[image: http://www.navlab.net/images/ex2img.png]
A radar or sonar attached to a vehicle B (Body coordinate frame) measures the
distance and direction to an object C. We assume that the distance and two
angles (typically bearing and elevation relative to B) are already combined to
the vector p_BC_B (i.e. the vector from B to C, decomposed in B). The position
of B is given as n_EB_E and z_EB, and the orientation (attitude) of B is given
as R_NB (this rotation matrix can be found from roll/pitch/yaw by using zyx2R).

Find the exact position of object C as n-vector and depth ( n_EC_E and z_EC ),
assuming Earth ellipsoid with semi-major axis a and flattening f. For WGS-72,
use a = 6 378 135 m and f = 1/298.26.


	Solution:

	>>> import nvector as nv
>>> import numpy as np
>>> wgs72 = nv.FrameE(name='WGS72')
>>> wgs72 = nv.FrameE(a=6378135, f=1.0/298.26)







	Step 1: Position and orientation of B is given 400m above E:

	>>> n_EB_E = wgs72.Nvector(nv.unit([[1], [2], [3]]), z=-400)
>>> frame_B = nv.FrameB(n_EB_E, yaw=10, pitch=20, roll=30, degrees=True)







	Step 2: Delta BC decomposed in B

	>>> p_BC_B = frame_B.Pvector(np.r_[3000, 2000, 100].reshape((-1, 1)))







	Step 3: Decompose delta BC in E

	>>> p_BC_E = p_BC_B.to_ecef_vector()







	Step 4: Find point C by adding delta BC to EB

	>>> p_EB_E = n_EB_E.to_ecef_vector()
>>> p_EC_E = p_EB_E + p_BC_E
>>> pointC = p_EC_E.to_geo_point()





>>> lat, lon, z = pointC.latitude_deg, pointC.longitude_deg, pointC.z
>>> msg = 'Ex2: PosC: lat, lon = {:4.2f}, {:4.2f} deg,  height = {:4.2f} m'
>>> msg.format(lat[0], lon[0], -z[0])
'Ex2: PosC: lat, lon = 53.33, 63.47 deg,  height = 406.01 m'







	See also

	Example 2 at www.navlab.net [http://www.navlab.net/nvector/#example_2]






Example 3: “ECEF-vector to geodetic latitude”

[image: http://www.navlab.net/images/ex3img.png]
Position B is given as an “ECEF-vector” p_EB_E (i.e. a vector from E, the
center of the Earth, to B, decomposed in E).
Find the geodetic latitude, longitude and height (latEB, lonEB and hEB),
assuming WGS-84 ellipsoid.


	Solution:

	>>> import numpy as np
>>> import nvector as nv
>>> wgs84 = nv.FrameE(name='WGS84')
>>> position_B = 6371e3 * np.vstack((0.9, -1, 1.1))  # m
>>> p_EB_E = wgs84.ECEFvector(position_B)
>>> pointB = p_EB_E.to_geo_point()





>>> lat, lon, h = pointB.latitude_deg, pointB.longitude_deg, -pointB.z
>>> msg = 'Ex3: Pos B: lat, lon = {:4.2f}, {:4.2f} deg, height = {:9.2f} m'
>>> msg.format(lat[0], lon[0], h[0])
'Ex3: Pos B: lat, lon = 39.38, -48.01 deg, height = 4702059.83 m'







	See also

	Example 3 at www.navlab.net [http://www.navlab.net/nvector/#example_3]






Example 4: “Geodetic latitude to ECEF-vector”

[image: http://www.navlab.net/images/ex4img.png]
Geodetic latitude, longitude and height are given for position B as latEB,
lonEB and hEB, find the ECEF-vector for this position, p_EB_E.


	Solution:

	>>> import nvector as nv
>>> wgs84 = nv.FrameE(name='WGS84')
>>> pointB = wgs84.GeoPoint(latitude=1, longitude=2, z=-3, degrees=True)
>>> p_EB_E = pointB.to_ecef_vector()





>>> 'Ex4: p_EB_E = {} m'.format(p_EB_E.pvector.ravel())
'Ex4: p_EB_E = [ 6373290.27721828   222560.20067474   110568.82718179] m'







	See also

	Example 4 at www.navlab.net [http://www.navlab.net/nvector/#example_4]






Example 5: “Surface distance”

[image: http://www.navlab.net/images/ex5img.png]
Find the surface distance sAB (i.e. great circle distance) between two
positions A and B. The heights of A and B are ignored, i.e. if they don’t have
zero height, we seek the distance between the points that are at the surface of
the Earth, directly above/below A and B. The Euclidean distance (chord length)
dAB should also be found. Use Earth radius 6371e3 m.
Compare the results with exact calculations for the WGS-84 ellipsoid.


	Solution for a sphere:

	>>> import numpy as np
>>> import nvector as nv
>>> frame_E = nv.FrameE(a=6371e3, f=0)
>>> positionA = frame_E.GeoPoint(latitude=88, longitude=0, degrees=True)
>>> positionB = frame_E.GeoPoint(latitude=89, longitude=-170, degrees=True)





>>> s_AB, _azia, _azib = positionA.distance_and_azimuth(positionB)
>>> p_AB_E = positionB.to_ecef_vector() - positionA.to_ecef_vector()
>>> d_AB = np.linalg.norm(p_AB_E.pvector, axis=0)[0]





>>> msg = 'Ex5: Great circle and Euclidean distance = {}'
>>> msg = msg.format('{:5.2f} km, {:5.2f} km')
>>> msg.format(s_AB / 1000, d_AB / 1000)
'Ex5: Great circle and Euclidean distance = 332.46 km, 332.42 km'







	Alternative sphere solution:

	>>> path = nv.GeoPath(positionA, positionB)
>>> s_AB2 = path.track_distance(method='greatcircle').ravel()
>>> d_AB2 = path.track_distance(method='euclidean').ravel()
>>> msg.format(s_AB2[0] / 1000, d_AB2[0] / 1000)
'Ex5: Great circle and Euclidean distance = 332.46 km, 332.42 km'







	Exact solution for the WGS84 ellipsoid:

	>>> wgs84 = nv.FrameE(name='WGS84')
>>> point1 = wgs84.GeoPoint(latitude=88, longitude=0, degrees=True)
>>> point2 = wgs84.GeoPoint(latitude=89, longitude=-170, degrees=True)
>>> s_12, _azi1, _azi2 = point1.distance_and_azimuth(point2)





>>> p_12_E = point2.to_ecef_vector() - point1.to_ecef_vector()
>>> d_12 = np.linalg.norm(p_12_E.pvector, axis=0)[0]
>>> msg = 'Ellipsoidal and Euclidean distance = {:5.2f} km, {:5.2f} km'
>>> msg.format(s_12 / 1000, d_12 / 1000)
'Ellipsoidal and Euclidean distance = 333.95 km, 333.91 km'







	See also

	Example 5 at www.navlab.net [http://www.navlab.net/nvector/#example_5]






Example 6 “Interpolated position”

[image: http://www.navlab.net/images/ex6img.png]
Given the position of B at time t0 and t1, n_EB_E(t0) and n_EB_E(t1).

Find an interpolated position at time ti, n_EB_E(ti). All positions are given
as n-vectors.


	Solution:

	>>> import nvector as nv
>>> wgs84 = nv.FrameE(name='WGS84')
>>> n_EB_E_t0 = wgs84.GeoPoint(89, 0, degrees=True).to_nvector()
>>> n_EB_E_t1 = wgs84.GeoPoint(89, 180, degrees=True).to_nvector()
>>> path = nv.GeoPath(n_EB_E_t0, n_EB_E_t1)





>>> t0 = 10.
>>> t1 = 20.
>>> ti = 16.  # time of interpolation
>>> ti_n = (ti - t0) / (t1 - t0) # normalized time of interpolation





>>> g_EB_E_ti = path.interpolate(ti_n).to_geo_point()





>>> lat_ti, lon_ti = g_EB_E_ti.latitude_deg, g_EB_E_ti.longitude_deg
>>> msg = 'Ex6, Interpolated position: lat, lon = {} deg, {} deg'
>>> msg.format(lat_ti, lon_ti)
'Ex6, Interpolated position: lat, lon = [ 89.7999805] deg, [ 180.] deg'







	See also

	Example 6 at www.navlab.net [http://www.navlab.net/nvector/#example_6]






Example 7: “Mean position”

[image: http://www.navlab.net/images/ex7img.png]
Three positions A, B, and C are given as n-vectors n_EA_E, n_EB_E, and n_EC_E.
Find the mean position, M, given as n_EM_E.
Note that the calculation is independent of the depths of the positions.


	Solution:

	>>> import nvector as nv
>>> points = nv.GeoPoint(latitude=[90, 60, 50],
...                      longitude=[0, 10, -20], degrees=True)
>>> nvectors = points.to_nvector()
>>> n_EM_E = nvectors.mean_horizontal_position()
>>> g_EM_E = n_EM_E.to_geo_point()
>>> lat, lon = g_EM_E.latitude_deg, g_EM_E.longitude_deg
>>> msg = 'Ex7: Pos M: lat, lon = {:4.2f}, {:4.2f} deg'
>>> msg.format(lat[0], lon[0])
'Ex7: Pos M: lat, lon = 67.24, -6.92 deg'







	See also

	Example 7 at www.navlab.net [http://www.navlab.net/nvector/#example_7]






Example 8: “A and azimuth/distance to B”

[image: http://www.navlab.net/images/ex8img.png]
We have an initial position A, direction of travel given as an azimuth
(bearing) relative to north (clockwise), and finally the
distance to travel along a great circle given as sAB.
Use Earth radius 6371e3 m to find the destination point B.

In geodesy this is known as “The first geodetic problem” or
“The direct geodetic problem” for a sphere, and we see that this is similar to
Example 2 [http://www.navlab.net/nvector/#example_2], but now the delta is
given as an azimuth and a great circle distance. (“The second/inverse geodetic
problem” for a sphere is already solved in Examples
1 [http://www.navlab.net/nvector/#example_1] and
5 [http://www.navlab.net/nvector/#example_5].)


	Solution:

	>>> import nvector as nv
>>> frame = nv.FrameE(a=6371e3, f=0)
>>> pointA = frame.GeoPoint(latitude=80, longitude=-90, degrees=True)
>>> pointB, _azimuthb = pointA.geo_point(distance=1000, azimuth=200,
...                                      degrees=True)
>>> lat, lon = pointB.latitude_deg, pointB.longitude_deg





>>> msg = 'Ex8, Destination: lat, lon = {:4.2f} deg, {:4.2f} deg'
>>> msg.format(lat, lon)
'Ex8, Destination: lat, lon = 79.99 deg, -90.02 deg'







	See also

	Example 8 at www.navlab.net [http://www.navlab.net/nvector/#example_8]






Example 9: “Intersection of two paths”

[image: http://www.navlab.net/images/ex9img.png]
Define a path from two given positions (at the surface of a spherical Earth),
as the great circle that goes through the two points.

Path A is given by A1 and A2, while path B is given by B1 and B2.

Find the position C where the two great circles intersect.


	Solution:

	>>> import nvector as nv
>>> pointA1 = nv.GeoPoint(10, 20, degrees=True)
>>> pointA2 = nv.GeoPoint(30, 40, degrees=True)
>>> pointB1 = nv.GeoPoint(50, 60, degrees=True)
>>> pointB2 = nv.GeoPoint(70, 80, degrees=True)
>>> pathA = nv.GeoPath(pointA1, pointA2)
>>> pathB = nv.GeoPath(pointB1, pointB2)





>>> pointC = pathA.intersect(pathB)
>>> pathA.on_path(pointC), pathB.on_path(pointC)
(array([False], dtype=bool), array([False], dtype=bool))
>>> pathA.on_great_circle(pointC), pathB.on_great_circle(pointC)
(array([ True], dtype=bool), array([ True], dtype=bool))
>>> pointC = pointC.to_geo_point()
>>> lat, lon = pointC.latitude_deg, pointC.longitude_deg
>>> msg = 'Ex9, Intersection: lat, lon = {:4.2f}, {:4.2f} deg'
>>> msg.format(lat[0], lon[0])
'Ex9, Intersection: lat, lon = 40.32, 55.90 deg'







	See also

	Example 9 at www.navlab.net [http://www.navlab.net/nvector/#example_9]






Example 10: “Cross track distance”

[image: https://raw.githubusercontent.com/pbrod/Nvector/master/ex10img.png]
Path A is given by the two positions A1 and A2 (similar to the previous
example).

Find the cross track distance sxt between the path A (i.e. the great circle
through A1 and A2) and the position B (i.e. the shortest distance at the
surface, between the great circle and B).

Also find the Euclidean distance dxt between B and the plane defined by the
great circle. Use Earth radius 6371e3.

Finally, find the intersection point on the great circle and determine if it is
between position A1 and A2.


	Solution:

	>>> import nvector as nv
>>> frame = nv.FrameE(a=6371e3, f=0)
>>> pointA1 = frame.GeoPoint(0, 0, degrees=True)
>>> pointA2 = frame.GeoPoint(10, 0, degrees=True)
>>> pointB = frame.GeoPoint(1, 0.1, degrees=True)
>>> pathA = nv.GeoPath(pointA1, pointA2)





>>> s_xt = pathA.cross_track_distance(pointB, method='greatcircle').ravel()
>>> d_xt = pathA.cross_track_distance(pointB, method='euclidean').ravel()





>>> val_txt = '{:4.2f} km, {:4.2f} km'.format(s_xt[0]/1000, d_xt[0]/1000)
>>> 'Ex10: Cross track distance: s_xt, d_xt = {}'.format(val_txt)
'Ex10: Cross track distance: s_xt, d_xt = 11.12 km, 11.12 km'





>>> pointC = pathA.closest_point_on_great_circle(pointB)
>>> pathA.on_path(pointC)
array([ True], dtype=bool)







	See also

	Example 10 at www.navlab.net [http://www.navlab.net/nvector/#example_10]








See also

geographiclib [https://pypi.python.org/pypi/geographiclib]





          

      

      

    

  

    
      
          
            
  
Functional examples

Below the functional solution to some common geodesic problems are given.
In the first example the object-oriented solution is also given.
The object-oriented solutions to the remaining problems can be found
here [https://github.com/pbrod/nvector/blob/master/nvector/tests/test_frames.py].


Example 1: “A and B to delta”

[image: http://www.navlab.net/images/ex1img.png]
Given two positions, A and B as latitudes, longitudes and depths relative to
Earth, E.

Find the exact vector between the two positions, given in meters north, east,
and down, and find the direction (azimuth) to B, relative to north.
Assume WGS-84 ellipsoid. The given depths are from the ellipsoid surface.
Use position A to define north, east, and down directions.
(Due to the curvature of Earth and different directions to the North Pole,
the north, east, and down directions will change (relative to Earth) for
different places.  A must be outside the poles for the north and east
directions to be defined.)


	Solution:

	>>> import numpy as np
>>> import nvector as nv
>>> from nvector import rad, deg





>>> lat_EA, lon_EA, z_EA = rad(1), rad(2), 3
>>> lat_EB, lon_EB, z_EB = rad(4), rad(5), 6







	Step1: Convert to n-vectors:

	>>> n_EA_E = nv.lat_lon2n_E(lat_EA, lon_EA)
>>> n_EB_E = nv.lat_lon2n_E(lat_EB, lon_EB)







	Step2: Find p_AB_E (delta decomposed in E).WGS-84 ellipsoid is default:

	>>> p_AB_E = nv.n_EA_E_and_n_EB_E2p_AB_E(n_EA_E, n_EB_E, z_EA, z_EB)







	Step3: Find R_EN for position A:

	>>> R_EN = nv.n_E2R_EN(n_EA_E)







	Step4: Find p_AB_N (delta decomposed in N).

	>>> p_AB_N = np.dot(R_EN.T, p_AB_E).ravel()
>>> valtxt = '{0:8.2f}, {1:8.2f}, {2:8.2f}'.format(*p_AB_N)
>>> 'Ex1: delta north, east, down = {}'.format(valtxt)
'Ex1: delta north, east, down = 331730.23, 332997.87, 17404.27'







	Step5: Also find the direction (azimuth) to B, relative to north:

	>>> azimuth = np.arctan2(p_AB_N[1], p_AB_N[0])
>>> 'azimuth = {0:4.2f} deg'.format(deg(azimuth))
'azimuth = 45.11 deg'







	OO-Solution:

	>>> import numpy as np
>>> import nvector as nv
>>> wgs84 = nv.FrameE(name='WGS84')
>>> pointA = wgs84.GeoPoint(latitude=1, longitude=2, z=3, degrees=True)
>>> pointB = wgs84.GeoPoint(latitude=4, longitude=5, z=6, degrees=True)







	Step 1: Find p_AB_E (delta decomposed in E).

	>>> p_AB_E = nv.diff_positions(pointA, pointB)







	Step 2: Find p_AB_N (delta decomposed in N).

	>>> frame_N = nv.FrameN(pointA)
>>> p_AB_N = p_AB_E.change_frame(frame_N)
>>> p_AB_N = p_AB_N.pvector.ravel()
>>> valtxt = '{0:8.2f}, {1:8.2f}, {2:8.2f}'.format(*p_AB_N)
>>> 'Ex1: delta north, east, down = {}'.format(valtxt)
'Ex1: delta north, east, down = 331730.23, 332997.87, 17404.27'







	Step3: Also find the direction (azimuth) to B, relative to north:

	>>> azimuth = np.arctan2(p_AB_N[1], p_AB_N[0])
>>> 'azimuth = {0:4.2f} deg'.format(np.rad2deg(azimuth))
'azimuth = 45.11 deg'







	See also

	Example 1 at www.navlab.net [http://www.navlab.net/nvector/#example_1]






Example 2: “B and delta to C”

[image: http://www.navlab.net/images/ex2img.png]
A radar or sonar attached to a vehicle B (Body coordinate frame) measures the
distance and direction to an object C. We assume that the distance and two
angles (typically bearing and elevation relative to B) are already combined to
the vector p_BC_B (i.e. the vector from B to C, decomposed in B). The position
of B is given as n_EB_E and z_EB, and the orientation (attitude) of B is given
as R_NB (this rotation matrix can be found from roll/pitch/yaw by using zyx2R).

Find the exact position of object C as n-vector and depth ( n_EC_E and z_EC ),
assuming Earth ellipsoid with semi-major axis a and flattening f. For WGS-72,
use a = 6 378 135 m and f = 1/298.26.


	Solution:

	>>> import numpy as np
>>> import nvector as nv
>>> from nvector import rad, deg







	A custom reference ellipsoid is given (replacing WGS-84):

	>>> wgs72 = dict(a=6378135, f=1.0/298.26)







	Step 1 Position and orientation of B is 400m above E:

	>>> n_EB_E = nv.unit([[1], [2], [3]])  # unit to get unit length of vector
>>> z_EB = -400
>>> yaw, pitch, roll = rad(10), rad(20), rad(30)
>>> R_NB = nv.zyx2R(yaw, pitch, roll)







	Step 2: Delta BC decomposed in B

	>>> p_BC_B = np.r_[3000, 2000, 100].reshape((-1, 1))







	Step 3: Find R_EN:

	>>> R_EN = nv.n_E2R_EN(n_EB_E)







	Step 4: Find R_EB, from R_EN and R_NB:

	>>> R_EB = np.dot(R_EN, R_NB)  # Note: closest frames cancel







	Step 5: Decompose the delta BC vector in E:

	>>> p_BC_E = np.dot(R_EB, p_BC_B)







	Step 6: Find the position of C, using the functions that goes from one

	>>> n_EC_E, z_EC = nv.n_EA_E_and_p_AB_E2n_EB_E(n_EB_E, p_BC_E, z_EB, **wgs72)





>>> lat_EC, lon_EC = nv.n_E2lat_lon(n_EC_E)
>>> lat, lon, z = deg(lat_EC), deg(lon_EC), z_EC
>>> msg = 'Ex2: PosC: lat, lon = {:4.2f}, {:4.2f} deg,  height = {:4.2f} m'
>>> msg.format(lat[0], lon[0], -z[0])
'Ex2: PosC: lat, lon = 53.33, 63.47 deg,  height = 406.01 m'







	See also

	Example 2 at www.navlab.net [http://www.navlab.net/nvector/#example_2]






Example 3: “ECEF-vector to geodetic latitude”

[image: http://www.navlab.net/images/ex3img.png]
Position B is given as an “ECEF-vector” p_EB_E (i.e. a vector from E, the
center of the Earth, to B, decomposed in E).
Find the geodetic latitude, longitude and height (latEB, lonEB and hEB),
assuming WGS-84 ellipsoid.


	Solution:

	>>> import numpy as np
>>> import nvector as nv
>>> from nvector import deg
>>> wgs84 = dict(a=6378137.0, f=1.0/298.257223563)
>>> p_EB_E = 6371e3 * np.vstack((0.9, -1, 1.1))  # m





>>> n_EB_E, z_EB = nv.p_EB_E2n_EB_E(p_EB_E, **wgs84)





>>> lat_EB, lon_EB = nv.n_E2lat_lon(n_EB_E)
>>> h = -z_EB
>>> lat, lon = deg(lat_EB), deg(lon_EB)





>>> msg = 'Ex3: Pos B: lat, lon = {:4.2f}, {:4.2f} deg, height = {:9.2f} m'
>>> msg.format(lat[0], lon[0], h[0])
'Ex3: Pos B: lat, lon = 39.38, -48.01 deg, height = 4702059.83 m'







	See also

	Example 3 at www.navlab.net [http://www.navlab.net/nvector/#example_3]






Example 4: “Geodetic latitude to ECEF-vector”

[image: http://www.navlab.net/images/ex4img.png]
Geodetic latitude, longitude and height are given for position B as latEB,
lonEB and hEB, find the ECEF-vector for this position, p_EB_E.


	Solution:

	>>> import nvector as nv
>>> from nvector import rad
>>> wgs84 = dict(a=6378137.0, f=1.0/298.257223563)
>>> lat_EB, lon_EB = rad(1), rad(2)
>>> h_EB = 3
>>> n_EB_E = nv.lat_lon2n_E(lat_EB, lon_EB)
>>> p_EB_E = nv.n_EB_E2p_EB_E(n_EB_E, -h_EB, **wgs84)





>>> 'Ex4: p_EB_E = {} m'.format(p_EB_E.ravel())
'Ex4: p_EB_E = [ 6373290.27721828   222560.20067474   110568.82718179] m'







	See also

	Example 4 at www.navlab.net [http://www.navlab.net/nvector/#example_4]






Example 5: “Surface distance”

[image: http://www.navlab.net/images/ex5img.png]
Find the surface distance sAB (i.e. great circle distance) between two
positions A and B. The heights of A and B are ignored, i.e. if they don’t have
zero height, we seek the distance between the points that are at the surface of
the Earth, directly above/below A and B. The Euclidean distance (chord length)
dAB should also be found. Use Earth radius 6371e3 m.
Compare the results with exact calculations for the WGS-84 ellipsoid.


	Solution for a sphere:

	>>> import numpy as np
>>> import nvector as nv
>>> from nvector import rad





>>> n_EA_E = nv.lat_lon2n_E(rad(88), rad(0))
>>> n_EB_E = nv.lat_lon2n_E(rad(89), rad(-170))





>>> r_Earth = 6371e3  # m, mean Earth radius
>>> s_AB = nv.great_circle_distance(n_EA_E, n_EB_E, radius=r_Earth)[0]
>>> d_AB = nv.euclidean_distance(n_EA_E, n_EB_E, radius=r_Earth)[0]





>>> msg = 'Ex5: Great circle and Euclidean distance = {}'
>>> msg = msg.format('{:5.2f} km, {:5.2f} km')
>>> msg.format(s_AB / 1000, d_AB / 1000)
'Ex5: Great circle and Euclidean distance = 332.46 km, 332.42 km'







	Exact solution for the WGS84 ellipsoid:

	>>> wgs84 = nv.FrameE(name='WGS84')
>>> point1 = wgs84.GeoPoint(latitude=88, longitude=0, degrees=True)
>>> point2 = wgs84.GeoPoint(latitude=89, longitude=-170, degrees=True)
>>> s_12, _azi1, _azi2 = point1.distance_and_azimuth(point2)





>>> p_12_E = point2.to_ecef_vector() - point1.to_ecef_vector()
>>> d_12 = np.linalg.norm(p_12_E.pvector, axis=0)[0]
>>> msg = 'Ellipsoidal and Euclidean distance = {:5.2f} km, {:5.2f} km'
>>> msg.format(s_12 / 1000, d_12 / 1000)
'Ellipsoidal and Euclidean distance = 333.95 km, 333.91 km'







	See also

	Example 5 at www.navlab.net [http://www.navlab.net/nvector/#example_5]






Example 6 “Interpolated position”

[image: http://www.navlab.net/images/ex6img.png]
Given the position of B at time t0 and t1, n_EB_E(t0) and n_EB_E(t1).

Find an interpolated position at time ti, n_EB_E(ti). All positions are given
as n-vectors.


	Solution:

	>>> import nvector as nv
>>> from nvector import rad, deg
>>> n_EB_E_t0 = nv.lat_lon2n_E(rad(89), rad(0))
>>> n_EB_E_t1 = nv.lat_lon2n_E(rad(89), rad(180))





>>> t0 = 10.
>>> t1 = 20.
>>> ti = 16.  # time of interpolation
>>> ti_n = (ti - t0) / (t1 - t0) # normalized time of interpolation





>>> n_EB_E_ti = nv.unit(n_EB_E_t0 + ti_n * (n_EB_E_t1 - n_EB_E_t0))
>>> lat_EB_ti, lon_EB_ti = nv.n_E2lat_lon(n_EB_E_ti)





>>> lat_ti, lon_ti = deg(lat_EB_ti), deg(lon_EB_ti)
>>> msg = 'Ex6, Interpolated position: lat, lon = {} deg, {} deg'
>>> msg.format(lat_ti, lon_ti)
'Ex6, Interpolated position: lat, lon = [ 89.7999805] deg, [ 180.] deg'







	See also

	Example 6 at www.navlab.net [http://www.navlab.net/nvector/#example_6]






Example 7: “Mean position”

[image: http://www.navlab.net/images/ex7img.png]
Three positions A, B, and C are given as n-vectors n_EA_E, n_EB_E, and n_EC_E.
Find the mean position, M, given as n_EM_E.
Note that the calculation is independent of the depths of the positions.


	Solution:

	>>> import numpy as np
>>> import nvector as nv
>>> from nvector import rad, deg





>>> n_EA_E = nv.lat_lon2n_E(rad(90), rad(0))
>>> n_EB_E = nv.lat_lon2n_E(rad(60), rad(10))
>>> n_EC_E = nv.lat_lon2n_E(rad(50), rad(-20))





>>> n_EM_E = nv.unit(n_EA_E + n_EB_E + n_EC_E)







	or

	>>> n_EM_E = nv.mean_horizontal_position(np.hstack((n_EA_E, n_EB_E, n_EC_E)))





>>> lat, lon = nv.n_E2lat_lon(n_EM_E)
>>> lat, lon = deg(lat), deg(lon)
>>> msg = 'Ex7: Pos M: lat, lon = {:4.2f}, {:4.2f} deg'
>>> msg.format(lat[0], lon[0])
'Ex7: Pos M: lat, lon = 67.24, -6.92 deg'







	See also

	Example 7 at www.navlab.net [http://www.navlab.net/nvector/#example_7]






Example 8: “A and azimuth/distance to B”

[image: http://www.navlab.net/images/ex8img.png]
We have an initial position A, direction of travel given as an azimuth
(bearing) relative to north (clockwise), and finally the
distance to travel along a great circle given as sAB.
Use Earth radius 6371e3 m to find the destination point B.

In geodesy this is known as “The first geodetic problem” or
“The direct geodetic problem” for a sphere, and we see that this is similar to
Example 2 [http://www.navlab.net/nvector/#example_2], but now the delta is
given as an azimuth and a great circle distance. (“The second/inverse geodetic
problem” for a sphere is already solved in Examples
1 [http://www.navlab.net/nvector/#example_1] and
5 [http://www.navlab.net/nvector/#example_5].)


	Solution:

	>>> import nvector as nv
>>> from nvector import rad, deg
>>> lat, lon = rad(80), rad(-90)





>>> n_EA_E = nv.lat_lon2n_E(lat, lon)
>>> azimuth = rad(200)
>>> s_AB = 1000.0  # [m]
>>> r_earth = 6371e3  # [m], mean earth radius





>>> distance_rad = s_AB / r_earth
>>> n_EB_E = nv.n_EA_E_distance_and_azimuth2n_EB_E(n_EA_E, distance_rad,
...                                                azimuth)
>>> lat_EB, lon_EB = nv.n_E2lat_lon(n_EB_E)
>>> lat, lon = deg(lat_EB), deg(lon_EB)
>>> msg = 'Ex8, Destination: lat, lon = {:4.2f} deg, {:4.2f} deg'
>>> msg.format(lat[0], lon[0])
'Ex8, Destination: lat, lon = 79.99 deg, -90.02 deg'







	See also

	Example 8 at www.navlab.net [http://www.navlab.net/nvector/#example_8]






Example 9: “Intersection of two paths”

[image: http://www.navlab.net/images/ex9img.png]
Define a path from two given positions (at the surface of a spherical Earth),
as the great circle that goes through the two points.

Path A is given by A1 and A2, while path B is given by B1 and B2.

Find the position C where the two great circles intersect.


	Solution:

	>>> import numpy as np
>>> import nvector as nv
>>> from nvector import rad, deg





>>> n_EA1_E = nv.lat_lon2n_E(rad(10), rad(20))
>>> n_EA2_E = nv.lat_lon2n_E(rad(30), rad(40))
>>> n_EB1_E = nv.lat_lon2n_E(rad(50), rad(60))
>>> n_EB2_E = nv.lat_lon2n_E(rad(70), rad(80))





>>> n_EC_E = nv.unit(np.cross(np.cross(n_EA1_E, n_EA2_E, axis=0),
...                           np.cross(n_EB1_E, n_EB2_E, axis=0),
...                           axis=0))
>>> n_EC_E *= np.sign(np.dot(n_EC_E.T, n_EA1_E))







	or alternatively

	>>> path_a, path_b = (n_EA1_E, n_EA2_E), (n_EB1_E, n_EB2_E)
>>> n_EC_E = nv.intersect(path_a, path_b)





>>> lat_EC, lon_EC = nv.n_E2lat_lon(n_EC_E)





>>> lat, lon = deg(lat_EC), deg(lon_EC)
>>> msg = 'Ex9, Intersection: lat, lon = {:4.2f}, {:4.2f} deg'
>>> msg.format(lat[0], lon[0])
'Ex9, Intersection: lat, lon = 40.32, 55.90 deg'





>>> nv.on_great_circle_path(path_a, n_EC_E), nv.on_great_circle_path(path_b, n_EC_E)
(array([False], dtype=bool), array([False], dtype=bool))
>>> nv.on_great_circle(path_a, n_EC_E), nv.on_great_circle(path_b, n_EC_E)
(array([ True], dtype=bool), array([ True], dtype=bool))







	See also

	Example 9 at www.navlab.net [http://www.navlab.net/nvector/#example_9]






Example 10: “Cross track distance”

[image: https://raw.githubusercontent.com/pbrod/Nvector/master/ex10img.png]
Path A is given by the two positions A1 and A2 (similar to the previous
example).

Find the cross track distance sxt between the path A (i.e. the great circle
through A1 and A2) and the position B (i.e. the shortest distance at the
surface, between the great circle and B).

Also find the Euclidean distance dxt between B and the plane defined by the
great circle. Use Earth radius 6371e3.

Finally, find the intersection point on the great circle and determine if it is
between position A1 and A2.


	Solution:

	>>> import numpy as np
>>> import nvector as nv
>>> n_EA1_E = nv.lat_lon2n_E(rad(0), rad(0))
>>> n_EA2_E = nv.lat_lon2n_E(rad(10), rad(0))
>>> n_EB_E = nv.lat_lon2n_E(rad(1), rad(0.1))
>>> path = (n_EA1_E, n_EA2_E)
>>> radius = 6371e3  # mean earth radius [m]
>>> s_xt = nv.cross_track_distance(path, n_EB_E, radius=radius)
>>> d_xt = nv.cross_track_distance(path, n_EB_E, method='euclidean',
...                                radius=radius)





>>> val_txt = '{:4.2f} km, {:4.2f} km'.format(s_xt[0]/1000, d_xt[0]/1000)
>>> 'Ex10: Cross track distance: s_xt, d_xt = {0}'.format(val_txt)
'Ex10: Cross track distance: s_xt, d_xt = 11.12 km, 11.12 km'





>>> n_EC_E = nv.closest_point_on_great_circle(path, n_EB_E)
>>> nv.on_great_circle_path(path, n_EC_E, radius)
array([ True], dtype=bool)







	Alternative solution 2:

	>>> s_xt2 = nv.great_circle_distance(n_EB_E, n_EC_E, radius)
>>> d_xt2 = nv.euclidean_distance(n_EB_E, n_EC_E, radius)
>>> np.allclose(s_xt, s_xt2), np.allclose(d_xt, d_xt2)
(True, True)







	Alternative solution 3:

	>>> c_E = nv.great_circle_normal(n_EA1_E, n_EA2_E)
>>> sin_theta = -np.dot(c_E.T, n_EB_E).ravel()
>>> s_xt3 = np.arcsin(sin_theta) * radius
>>> d_xt3 = sin_theta * radius
>>> np.allclose(s_xt, s_xt3), np.allclose(d_xt, d_xt3)
(True, True)







	See also

	Example 10 at www.navlab.net [http://www.navlab.net/nvector/#example_10]









          

      

      

    

  

    
      
          
            
  
License

The content of this library is based on the following publication:

Gade, K. (2010). A Nonsingular Horizontal Position Representation, The Journal
of Navigation, Volume 63, Issue 03, pp 395-417, July 2010.
(www.navlab.net/Publications/A_Nonsingular_Horizontal_Position_Representation.pdf)

This paper should be cited in publications using this library.

Copyright (c) 2015, Norwegian Defence Research Establishment (FFI)
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above publication
information, copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above publication
information, copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the
distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
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Changelog

Created with gitcommand: git shortlog v0.4.1..v0.5.1


Version 0.5.2, Mars 7, 2017


	Per A Brodtkorb (10):

	
	Fixed tests in tests/test_frames.py

	Updated to setup.cfg and tox.ini + pep8

	updated .travis.yml

	Updated Readme.rst with new example 10 picture and link to nvector docs at readthedocs.

	updated official documentation links

	Updated crosstrack distance tests.










Version 0.5.1, Mars 5, 2017


	Cody (4):

	
	Explicitely numbered replacement fields

	Migrated % string formating





	Per A Brodtkorb (29):

	
	pep8

	Updated failing examples

	Updated README.rst

	Removed obsolete pass statement

	Documented functions

	added .checkignore for quantifycode

	moved test_docstrings and use_docstring_from into _common.py

	Added .codeclimate.yml

	Updated installation information in _info.py

	Added GeoPath.on_path method. Clearified intersection example

	Added great_circle_normal, cross_track_distance Renamed intersection to intersect (Intersection is deprecated.)

	Simplified R2zyx with a call to R2xyz Improved accuracy for great circle cross track distance for small distances.

	Added on_great_circle, _on_great_circle_path, _on_ellipsoid_path, closest_point_on_great_circle and closest_point_on_path to GeoPath

	made __eq__ more robust for frames

	Removed duplicated code

	Updated tests

	Removed fishy test

	replaced zero n-vector with nan

	Commented out failing test.

	Added example 10 image




Added ‘closest_point_on_great_circle’, ‘on_great_circle’,’on_great_circle_path’.



	Updated examples + documentation

	Updated index depth

	Updated README.rst and classifier in setup.cfg










Version 0.4.1, Januar 19, 2016

pbrod (46):



	Cosmetic updates

	Updated README.rst

	updated docs and removed unused code

	updated README.rst and .coveragerc

	Refactored out _check_frames

	Refactored out _default_frame

	Updated .coveragerc

	Added link to geographiclib

	Updated external link

	Updated documentation

	Added figures to examples

	Added GeoPath.interpolate + interpolation example 6

	Added links to FFI homepage.

	
	Updated documentation:

	
	Added link to nvector toolbox for matlab

	For each example added links to the more detailed explanation on the homepage









	Updated link to nvector toolbox for matlab

	Added link to nvector on  pypi

	Updated documentation fro FrameB, FrameE, FrameL and FrameN.

	updated __all__ variable

	Added missing R_Ee to function n_EA_E_and_n_EB_E2azimuth + updated documentation

	Updated CHANGES.rst

	Updated conf.py

	Renamed info.py to _info.py

	All examples are now generated from _examples.py.









Version 0.1.3, Januar 1, 2016

pbrod (31):



	Refactored

	Updated tests

	Updated docs

	Moved tests to nvector/tests

	Updated .coverage     Added travis.yml, .landscape.yml

	Deleted obsolete LICENSE

	Updated README.rst

	Removed ngs version

	Fixed bug in .travis.yml

	Updated .travis.yml

	Removed dependence on navigator.py

	Updated README.rst

	Updated examples

	Deleted skeleton.py and added tox.ini

	Small refactoring     Renamed distance_rad_bearing_rad2point to n_EA_E_distance_and_azimuth2n_EB_E     updated tests

	Renamed azimuth to n_EA_E_and_n_EB_E2azimuth     Added tests for R2xyz as well as R2zyx

	Removed backward compatibility     Added test_n_E_and_wa2R_EL

	Refactored tests

	Commented out failing tests on python 3+

	updated CHANGES.rst

	Removed bug in setup.py









Version 0.1.1, Januar 1, 2016


	pbrod (31):

	
	Initial commit: Translated code from Matlab to Python.

	Added object oriented interface to nvector library

	Added tests for object oriented interface

	Added geodesic tests.
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	Release:	0.5


	Date:	Mar 07, 2017





This reference manual details functions, modules, and objects
included in nvector, describing what they are and what they do.



	nvector package
	Geodesic functions
	nvector._core.lat_lon2n_E

	nvector._core.n_E2lat_lon

	nvector._core.n_EB_E2p_EB_E

	nvector._core.p_EB_E2n_EB_E

	nvector._core.n_EA_E_and_n_EB_E2p_AB_E

	nvector._core.n_EA_E_and_p_AB_E2n_EB_E

	nvector._core.n_EA_E_and_n_EB_E2azimuth

	nvector._core.n_EA_E_distance_and_azimuth2n_EB_E

	nvector._core.great_circle_distance

	nvector._core.euclidean_distance

	nvector._core.cross_track_distance

	nvector._core.closest_point_on_great_circle

	nvector._core.intersect

	nvector._core.mean_horizontal_position

	nvector._core.on_great_circle

	nvector._core.on_great_circle_path





	Rotation matrices and angles
	nvector._core.E_rotation

	nvector._core.n_E2R_EN

	nvector._core.n_E_and_wa2R_EL

	nvector._core.R_EL2n_E

	nvector._core.R_EN2n_E

	nvector._core.R2xyz

	nvector._core.R2zyx

	nvector._core.xyz2R

	nvector._core.zyx2R





	Misc functions
	nvector._core.nthroot

	nvector._core.deg

	nvector._core.rad

	nvector._core.select_ellipsoid

	nvector._core.unit





	OO interface to Geodesic functions
	nvector.objects.FrameE

	nvector.objects.FrameN

	nvector.objects.FrameL

	nvector.objects.FrameB

	nvector.objects.ECEFvector

	nvector.objects.GeoPoint

	nvector.objects.Nvector

	nvector.objects.GeoPath

	nvector.objects.Pvector

	nvector.objects.diff_positions

















          

      

      

    

  

    
      
          
            
  
nvector package


Geodesic functions







	lat_lon2n_E(latitude,
  
    
    
    nvector._core.lat_lon2n_E
    
    

    
 
  
  

    
      
          
            
  
nvector._core.lat_lon2n_E


	
nvector._core.lat_lon2n_E(latitude, longitude, R_Ee=None)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/_core.py#L303-L330]

	Converts latitude and longitude to n-vector.





	Parameters:	latitude, longitude: real scalars or vectors of length n.


Geodetic latitude and longitude given in [rad]




R_Ee : 2d array


rotation matrix defining the axes of the coordinate frame E.







	Returns:	n_E: 3 x n array


n-vector(s) [no unit] decomposed in E.











See also

n_E2lat_lon











          

      

      

    

  

  
    
    
    nvector._core.n_E2lat_lon
    
    

    
 
  
  

    
      
          
            
  
nvector._core.n_E2lat_lon


	
nvector._core.n_E2lat_lon(n_E, R_Ee=None)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/_core.py#L333-L370]

	Converts n-vector to latitude and longitude.





	Parameters:	n_E: 3 x n array


n-vector [no unit] decomposed in E.




R_Ee : 2d array


rotation matrix defining the axes of the coordinate frame E.







	Returns:	latitude, longitude: real scalars or vectors of lengt n.


Geodetic latitude and longitude given in [rad]











See also

lat_lon2n_E











          

      

      

    

  

  
    
    
    nvector._core.n_EB_E2p_EB_E
    
    

    
 
  
  

    
      
          
            
  
nvector._core.n_EB_E2p_EB_E


	
nvector._core.n_EB_E2p_EB_E(n_EB_E, depth=0, a=6378137, f=0.0033528106647474805, R_Ee=None)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/_core.py#L522-L548]

	
Converts n-vector to Cartesian position vector in meters.






	Parameters:	n_EB_E:  3 x n array



n-vector(s) [no unit] of position B, decomposed in E.





	depth:  1 x n array

	Depth(s) [m] of system B, relative to the ellipsoid (depth = -height)



	a: real scalar, default WGS-84 ellipsoid.

	Semi-major axis of the Earth ellipsoid given in [m].



	f: real scalar, default WGS-84 ellipsoid.

	Flattening [no unit] of the Earth ellipsoid. If f==0 then spherical
Earth with radius a is used in stead of WGS-84.



	R_Ee : 2d array

	rotation matrix defining the axes of the coordinate frame E.











	Returns:	p_EB_E:  3 x n array


Cartesian position vector(s) from E to B, decomposed in E.










Notes

The position of B (typically body) relative to E (typically Earth) is
given into this function as n-vector, n_EB_E. The function converts
to cartesian position vector (“ECEF-vector”), p_EB_E, in meters.
The calculation is excact, taking the ellipsity of the Earth into account.
It is also non-singular as both n-vector and p-vector are non-singular
(except for the center of the Earth).
The default ellipsoid model used is WGS-84, but other ellipsoids/spheres
might be specified.









          

      

      

    

  

  
    
    
    nvector._core.p_EB_E2n_EB_E
    
    

    
 
  
  

    
      
          
            
  
nvector._core.p_EB_E2n_EB_E


	
nvector._core.p_EB_E2n_EB_E(p_EB_E, a=6378137, f=0.0033528106647474805, R_Ee=None)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/_core.py#L599-L640]

	
Converts Cartesian position vector in meters to n-vector.






	Parameters:	p_EB_E:  3 x n array



Cartesian position vector(s) from E to B, decomposed in E.





	a: real scalar, default WGS-84 ellipsoid.

	Semi-major axis of the Earth ellipsoid given in [m].



	f: real scalar, default WGS-84 ellipsoid.

	Flattening [no unit] of the Earth ellipsoid. If f==0 then spherical
Earth with radius a is used in stead of WGS-84.



	R_Ee : 2d array

	rotation matrix defining the axes of the coordinate frame E.











	Returns:	n_EB_E:  3 x n array



n-vector(s) [no unit] of position B, decomposed in E.





	depth:  1 x n array

	Depth(s) [m] of system B, relative to the ellipsoid (depth = -height)














Notes

The position of B (typically body) relative to E (typically Earth) is
given into this function as cartesian position vector p_EB_E, in meters.
(“ECEF-vector”). The function converts to n-vector, n_EB_E and its
depth, depth.
The calculation is excact, taking the ellipsity of the Earth into account.
It is also non-singular as both n-vector and p-vector are non-singular
(except for the center of the Earth).
The default ellipsoid model used is WGS-84, but other ellipsoids/spheres
might be specified.
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nvector._core.n_EA_E_and_n_EB_E2p_AB_E


	
nvector._core.n_EA_E_and_n_EB_E2p_AB_E(n_EA_E, n_EB_E, z_EA=0, z_EB=0, a=6378137, f=0.0033528106647474805, R_Ee=None)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/_core.py#L690-L698]

	
Return the delta vector from position A to B.






	Parameters:	n_EA_E, n_EB_E:  3 x n array



n-vector(s) [no unit] of position A and B, decomposed in E.





	z_EA, z_EB:  1 x n array

	Depth(s) [m] of system A and B, relative to the ellipsoid.
(z_EA = -height, z_EB = -height)



	a: real scalar, default WGS-84 ellipsoid.

	Semi-major axis of the Earth ellipsoid given in [m].



	f: real scalar, default WGS-84 ellipsoid.

	Flattening [no unit] of the Earth ellipsoid. If f==0 then spherical
Earth with radius a is used in stead of WGS-84.



	R_Ee : 2d array

	rotation matrix defining the axes of the coordinate frame E.











	Returns:	p_AB_E:  3 x n array


Cartesian position vector(s) from A to B, decomposed in E.










Notes

The n-vectors for positions A (n_EA_E) and B (n_EB_E) are given. The
output is the delta vector from A to B (p_AB_E).
The calculation is excact, taking the ellipsity of the Earth into account.
It is also non-singular as both n-vector and p-vector are non-singular
(except for the center of the Earth).
The default ellipsoid model used is WGS-84, but other ellipsoids/spheres
might be specified.









          

      

      

    

  

  
    
    
    nvector._core.n_EA_E_and_p_AB_E2n_EB_E
    
    

    
 
  
  

    
      
          
            
  
nvector._core.n_EA_E_and_p_AB_E2n_EB_E


	
nvector._core.n_EA_E_and_p_AB_E2n_EB_E(n_EA_E, p_AB_E, z_EA=0, a=6378137, f=0.0033528106647474805, R_Ee=None)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/_core.py#L701-L752]

	Return position B from position A and delta.





	Parameters:	n_EA_E:  3 x n array


n-vector(s) [no unit] of position A, decomposed in E.




p_AB_E:  3 x n array


Cartesian position vector(s) from A to B, decomposed in E.




z_EA:  1 x n array


Depth(s) [m] of system A, relative to the ellipsoid. (z_EA = -height)




a: real scalar, default WGS-84 ellipsoid.


Semi-major axis of the Earth ellipsoid given in [m].




f: real scalar, default WGS-84 ellipsoid.


Flattening [no unit] of the Earth ellipsoid. If f==0 then spherical
Earth with radius a is used in stead of WGS-84.




R_Ee : 2d array


rotation matrix defining the axes of the coordinate frame E.







	Returns:	n_EB_E:  3 x n array


n-vector(s) [no unit] of position B, decomposed in E.




z_EB:  1 x n array


Depth(s) [m] of system B, relative to the ellipsoid.
(z_EB = -height)











See also

n_EA_E_and_n_EB_E2p_AB_E, p_EB_E2n_EB_E, n_EB_E2p_EB_E



Notes

The n-vector for position A (n_EA_E) and the position-vector from position
A to position B (p_AB_E) are given. The output is the n-vector of position
B (n_EB_E) and depth of B (z_EB).
The calculation is excact, taking the ellipsity of the Earth into account.
It is also non-singular as both n-vector and p-vector are non-singular
(except for the center of the Earth).
The default ellipsoid model used is WGS-84, but other ellipsoids/spheres
might be specified.









          

      

      

    

  

  
    
    
    nvector._core.n_EA_E_and_n_EB_E2azimuth
    
    

    
 
  
  

    
      
          
            
  
nvector._core.n_EA_E_and_n_EB_E2azimuth


	
nvector._core.n_EA_E_and_n_EB_E2azimuth(n_EA_E, n_EB_E, a=6378137, f=0.0033528106647474805, R_Ee=None)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/_core.py#L1279-L1322]

	Return azimuth from A to B, relative to North:





	Parameters:	n_EA_E, n_EB_E:  3 x n array


n-vector(s) [no unit] of position A and B, respectively,
decomposed in E.




a: real scalar, default WGS-84 ellipsoid.


Semi-major axis of the Earth ellipsoid given in [m].




f: real scalar, default WGS-84 ellipsoid.


Flattening [no unit] of the Earth ellipsoid. If f==0 then spherical
Earth with radius a is used in stead of WGS-84.




R_Ee : 2d array


rotation matrix defining the axes of the coordinate frame E.







	Returns:	azimuth: n, array


Angle [rad] the line makes with a meridian, taken clockwise from north.


















          

      

      

    

  

  
    
    
    nvector._core.n_EA_E_distance_and_azimuth2n_EB_E
    
    

    
 
  
  

    
      
          
            
  
nvector._core.n_EA_E_distance_and_azimuth2n_EB_E


	
nvector._core.n_EA_E_distance_and_azimuth2n_EB_E(n_EA_E, distance_rad, azimuth, R_Ee=None)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/_core.py#L1351-L1366]

	
Return position B from azimuth and distance from position A






	Parameters:	n_EA_E:  3 x n array



n-vector(s) [no unit] of position A decomposed in E.





	distance_rad: n, array

	great circle distance [rad] from position A to B



	azimuth: n, array

	Angle [rad] the line makes with a meridian, taken clockwise from north.











	Returns:	n_EB_E:  3 x n array


n-vector(s) [no unit] of position B decomposed in E.
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nvector._core.great_circle_distance


	
nvector._core.great_circle_distance(n_EA_E, n_EB_E, radius=6371009.0)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/_core.py#L1242-L1253]

	Return great circle distance between positions A and B





	Parameters:	n_EA_E, n_EB_E:  3 x n array



n-vector(s) [no unit] of position A and B, decomposed in E.





	radius: real scalar

	radius of sphere.





Formulae is given by equation (16) in Gade (2010) and is well
conditioned for all angles.


















          

      

      

    

  

  
    
    
    nvector._core.euclidean_distance
    
    

    
 
  
  

    
      
          
            
  
nvector._core.euclidean_distance


	
nvector._core.euclidean_distance(n_EA_E, n_EB_E, radius=6371009.0)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/_core.py#L1273-L1276]

	Return Euclidean distance between positions A and B





	Parameters:	n_EA_E, n_EB_E:  3 x n array



n-vector(s) [no unit] of position A and B, decomposed in E.





	radius: real scalar

	radius of sphere.
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nvector._core.cross_track_distance


	
nvector._core.cross_track_distance(path, n_EB_E, method='greatcircle', radius=6371009.0)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/_core.py#L1106-L1114]

	Return  cross track distance between path A and position B.





	Parameters:	path: tuple of 2 n-vectors



2 n-vectors of positions defining path A, decomposed in E.





	n_EB_E:  3 x m array

	n-vector(s) of position B to measure the cross track distance to.



	method: string

	defining distance calculated. Options are: ‘greatcircle’ or ‘euclidean’



	radius: real scalar

	radius of sphere. (default 6371009.0)











	Returns:	distance : array of length max(n, m)


cross track distance(s)
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nvector._core.closest_point_on_great_circle


	
nvector._core.closest_point_on_great_circle(path, n_EB_E)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/_core.py#L1210-L1218]

	Return closest point C on great circle path A to position B.





	Parameters:	path: tuple of 2 n-vectors of 3 x n arrays



2 n-vectors of positions defining path A, decomposed in E.





	n_EB_E:  3 x m array

	n-vector(s) of position B to find the closest point to.











	Returns:	n_EC_E:  3 x max(m, n) array


n-vector(s) of closest position C on great circle path A
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nvector._core.intersect


	
nvector._core.intersect(path_a, path_b)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/_core.py#L1037-L1053]

	Return the intersection(s) between the great circles of the two paths





	Parameters:	path_a, path_b: tuple of 2 n-vectors


defining path A and path B, respectively.
Path A and B has shape 2 x 3 x n and 2 x 3 x m, respectively.







	Returns:	n_EC_E : array of shape 3 x max(n, m)


n-vector(s) [no unit] of position C decomposed in E.
point(s) of intersection between paths.
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nvector._core.mean_horizontal_position


	
nvector._core.mean_horizontal_position(n_EB_E)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/_core.py#L1391-L1394]

	
Return the n-vector of the horizontal mean position.






	Parameters:	n_EB_E:  3 x n array


n-vectors [no unit] of positions Bi, decomposed in E.







	Returns:	p_EM_E:  3 x 1 array


n-vector [no unit] of the mean positions of all Bi, decomposed in E.
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nvector._core.on_great_circle


	
nvector._core.on_great_circle(path, n_EB_E, radius=6371009.0, rtol=1e-06, atol=1e-08)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/_core.py#L1144-L1147]

	True if position B is on great circle through path A.





	Parameters:	path: tuple of 2 n-vectors



2 n-vectors of positions defining path A, decomposed in E.





	n_EB_E:  3 x m array

	n-vector(s) of position B to check to.



	radius: real scalar

	radius of sphere. (default 6371009.0)



	rtol, atol: real scalars

	defining relative and absolute tolerance











	Returns:	on : bool array of length max(n, m)


True if position B is on great circle through path A.
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nvector._core.on_great_circle_path


	
nvector._core.on_great_circle_path(path, n_EB_E, radius=6371009.0, rtol=1e-06, atol=1e-08)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/_core.py#L1177-L1184]

	True if position B is on great circle and between endpoints of path A.





	Parameters:	path: tuple of 2 n-vectors



2 n-vectors of positions defining path A, decomposed in E.





	n_EB_E:  3 x m array

	n-vector(s) of position B to measure the cross track distance to.



	radius: real scalar

	radius of sphere. (default 6371009.0)



	rtol, atol: real scalars

	defining relative and absolute tolerance











	Returns:	on : bool array of length max(n, m)


True if position B is on great circle and between endpoints of path A.
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nvector._core.E_rotation


	
nvector._core.E_rotation(axes='e')[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/_core.py#L159-L207]

	Return rotation matrix R_Ee defining the axes of the coordinate frame E.





	Parameters:	axes : ‘e’ or ‘E’


defines orientation of the axes of the coordinate frame E. Options are:
‘e’: z-axis points to the North Pole along the Earth’s rotation axis,


x-axis points towards the point where latitude = longitude = 0.
This choice is very common in many fields.





	‘E’: x-axis points to the North Pole along the Earth’s rotation axis,

	y-axis points towards longitude +90deg (east) and latitude = 0.
(the yz-plane coincides with the equatorial plane).
This choice of axis ensures that at zero latitude and longitude,
frame N (North-East-Down) has the same orientation as frame E.
If roll/pitch/yaw are zero, also frame B (forward-starboard-down)
has this orientation. In this manner, the axes of frame E is
chosen to correspond with the axes of frame N and B.
The functions in this library originally used this option.











	Returns:	R_Ee : 2d array


rotation matrix defining the axes of the coordinate frame E as
described in Table 2 in Gade (2010)




R_Ee controls the axes of the coordinate frame E (Earth-Centred,

Earth-Fixed, ECEF) used by the other functions in this library







Examples

>>> import nvector as nv
>>> nv.E_rotation(axes='e')
array([[ 0,  0,  1],
       [ 0,  1,  0],
       [-1,  0,  0]])
>>> nv.E_rotation(axes='E')
array([[ 1.,  0.,  0.],
       [ 0.,  1.,  0.],
       [ 0.,  0.,  1.]])
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nvector._core.n_E2R_EN


	
nvector._core.n_E2R_EN(n_E, R_Ee=None)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/_core.py#L391-L437]

	Returns the rotation matrix R_EN from n-vector.





	Parameters:	n_E: 3 x 1 array


n-vector [no unit] decomposed in E




R_Ee : 2d array


rotation matrix defining the axes of the coordinate frame E.







	Returns:	R_EN:  3 x 3 array


The resulting rotation matrix [no unit] (direction cosine matrix).











See also

R_EN2n_E, n_E_and_wa2R_EL, R_EL2n_E











          

      

      

    

  

  
    
    
    nvector._core.n_E_and_wa2R_EL
    
    

    
 
  
  

    
      
          
            
  
nvector._core.n_E_and_wa2R_EL


	
nvector._core.n_E_and_wa2R_EL(n_E, wander_azimuth, R_Ee=None)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/_core.py#L440-L474]

	Returns rotation matrix R_EL from n-vector and wander azimuth angle.

R_EL = n_E_and_wa2R_EL(n_E,wander_azimuth) Calculates the rotation matrix
(direction cosine matrix) R_EL using n-vector (n_E) and the wander
azimuth angle.
When wander_azimuth=0, we have that N=L (See Table 2 in Gade (2010) for
details)





	Parameters:	n_E: 3 x 1 array


n-vector [no unit] decomposed in E




wander_azimuth: real scalar


Angle [rad] between L’s x-axis and north, positive about L’s z-axis.




R_Ee : 2d array


rotation matrix defining the axes of the coordinate frame E.







	Returns:	R_EL: 3 x 3 array


The resulting rotation matrix.       [no unit]











See also

R_EL2n_E, R_EN2n_E, n_E2R_EN











          

      

      

    

  

  
    
    
    nvector._core.R_EL2n_E
    
    

    
 
  
  

    
      
          
            
  
nvector._core.R_EL2n_E


	
nvector._core.R_EL2n_E(R_EL)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/_core.py#L845-L866]

	Returns n-vector from the rotation matrix R_EL.





	Parameters:	R_EL: 3 x 3 array


Rotation matrix (direction cosine matrix) [no unit]







	Returns:	n_E: 3 x 1 array


n-vector [no unit] decomposed in E.











See also

R_EN2n_E, n_E_and_wa2R_EL, n_E2R_EN
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nvector._core.R_EN2n_E


	
nvector._core.R_EN2n_E(R_EN)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/_core.py#L869-L890]

	Returns n-vector from the rotation matrix R_EN.





	Parameters:	R_EN: 3 x 3 array


Rotation matrix (direction cosine matrix) [no unit]







	Returns:	n_E: 3 x 1 array


n-vector [no unit] decomposed in E.











See also

n_E2R_EN, R_EL2n_E, n_E_and_wa2R_EL
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nvector._core.R2xyz


	
nvector._core.R2xyz(R_AB)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/_core.py#L755-L801]

	Returns the angles about new axes in the xyz-order from a rotation matrix.





	Parameters:	R_AB: 3x3 array


rotation matrix [no unit] (direction cosine matrix) such that the
relation between a vector v decomposed in A and B is given by:
v_A = np.dot(R_AB, v_B)







	Returns:	x, y, z: real scalars


Angles [rad] of rotation about new axes.











See also

xyz2R, R2zyx, xyz2R



Notes

The x, y, z angles are called Euler angles or Tait-Bryan angles and are
defined by the following procedure of successive rotations:
Given two arbitrary coordinate frames A and B. Consider a temporary frame
T that initially coincides with A. In order to make T align with B, we
first rotate T an angle x about its x-axis (common axis for both A and T).
Secondly, T is rotated an angle y about the NEW y-axis of T. Finally, T
is rotated an angle z about its NEWEST z-axis. The final orientation of
T now coincides with the orientation of B.

The signs of the angles are given by the directions of the axes and the
right hand rule.
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nvector._core.R2zyx


	
nvector._core.R2zyx(R_AB)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/_core.py#L804-L842]

	Returns the angles about new axes in the zxy-order from a rotation matrix.





	Parameters:	R_AB:  3x3 array


rotation matrix [no unit] (direction cosine matrix) such that the
relation between a vector v decomposed in A and B is given by:
v_A = np.dot(R_AB, v_B)







	Returns:	z, y, x: real scalars


Angles [rad] of rotation about new axes.











See also

zyx2R, xyz2R, R2xyz



Notes

The z, x, y angles are called Euler angles or Tait-Bryan angles and are
defined by the following procedure of successive rotations:
Given two arbitrary coordinate frames A and B. Consider a temporary frame
T that initially coincides with A. In order to make T align with B, we
first rotate T an angle z about its z-axis (common axis for both A and T).
Secondly, T is rotated an angle y about the NEW y-axis of T. Finally, T
is rotated an angle x about its NEWEST x-axis. The final orientation of
T now coincides with the orientation of B.

The signs of the angles are given by the directions of the axes and the
right hand rule.

Note that if A is a north-east-down frame and B is a body frame, we
have that z=yaw, y=pitch and x=roll.
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nvector._core.xyz2R


	
nvector._core.xyz2R(x, y, z)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/_core.py#L893-L937]

	Returns rotation matrix from 3 angles about new axes in the xyz-order.





	Parameters:	x,y,z: real scalars


Angles [rad] of rotation about new axes.







	Returns:	R_AB: 3 x 3 array


rotation matrix [no unit] (direction cosine matrix) such that the
relation between a vector v decomposed in A and B is given by:
v_A = np.dot(R_AB, v_B)











See also

R2xyz, zyx2R, R2zyx



Notes

The rotation matrix R_AB is created based on 3 angles x,y,z about new axes
(intrinsic) in the order x-y-z. The angles are called Euler angles or
Tait-Bryan angles and are defined by the following procedure of successive
rotations:
Given two arbitrary coordinate frames A and B. Consider a temporary frame
T that initially coincides with A. In order to make T align with B, we
first rotate T an angle x about its x-axis (common axis for both A and T).
Secondly, T is rotated an angle y about the NEW y-axis of T. Finally, T
is rotated an angle z about its NEWEST z-axis. The final orientation of
T now coincides with the orientation of B.

The signs of the angles are given by the directions of the axes and the
right hand rule.
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nvector._core.zyx2R


	
nvector._core.zyx2R(z, y, x)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/_core.py#L940-L987]

	Returns rotation matrix from 3 angles about new axes in the zyx-order.





	Parameters:	z, y, x: real scalars


Angles [rad] of rotation about new axes.







	Returns:	R_AB: 3 x 3 array


rotation matrix [no unit] (direction cosine matrix) such that the
relation between a vector v decomposed in A and B is given by:
v_A = np.dot(R_AB, v_B)











See also

R2zyx, xyz2R, R2xyz



Notes

The rotation matrix R_AB is created based on 3 angles
z,y,x about new axes (intrinsic) in the order z-y-x. The angles are called
Euler angles or Tait-Bryan angles and are defined by the following
procedure of successive rotations:
Given two arbitrary coordinate frames A and B. Consider a temporary frame
T that initially coincides with A. In order to make T align with B, we
first rotate T an angle z about its z-axis (common axis for both A and T).
Secondly, T is rotated an angle y about the NEW y-axis of T. Finally, T
is rotated an angle x about its NEWEST x-axis. The final orientation of
T now coincides with the orientation of B.

The signs of the angles are given by the directions of the axes and the
right hand rule.

Note that if A is a north-east-down frame and B is a body frame, we
have that z=yaw, y=pitch and x=roll.
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nvector._core.nthroot


	
nvector._core.nthroot(x, n)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/_core.py#L210-L226]

	Return the n’th root of x to machine precision

Parameters
x, n

Examples

>>> import nvector as nv
>>> nv.nthroot(27.0, 3)
array(3.0)
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nvector._core.deg


	
nvector._core.deg(rad_angle)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/_core.py#L229-L247]

	Converts angle in radians to degrees.





	Parameters:	rad_angle:


angle in radians







	Returns:	deg_angle:


angle in degrees











See also

rad
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nvector._core.rad


	
nvector._core.rad(deg_angle)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/_core.py#L250-L268]

	Converts angle in degrees to radians.





	Parameters:	deg_angle:


angle in degrees







	Returns:	rad_angle:


angle in radians











See also

deg
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nvector._core.select_ellipsoid


	
nvector._core.select_ellipsoid(name)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/_core.py#L104-L156]

	Return semi-major axis (a), flattening (f) and name of ellipsoid





	Parameters:	name : string


name of ellipsoid. Valid options are:
‘airy1858’, ‘airymodified’, ‘australiannational’, ‘everest1830’,
‘everestmodified’, ‘krassovsky’, ‘krassovsky1938’, ‘fisher1968’,
‘fisher1960’, ‘international’, ‘hayford’, ‘clarke1866’, ‘nad27’,
‘bessel’, ‘bessel1841’, ‘grs80’, ‘wgs84’, ‘nad83’,
‘sovietgeod.system1985’, ‘wgs72’, ‘hough1956’, ‘hough’, ‘nwl-9d’,
‘wgs66’, ‘southamerican1969’,  ‘clarke1880’.










Examples

>>> import nvector as nv
>>> nv.select_ellipsoid(name='wgs84')
(6378137.0, 0.0033528106647474805, 'GRS80 / WGS84  (NAD83)')
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nvector._core.unit(vector, norm_zero_vector=1)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/_core.py#L271-L300]

	Convert input vector to a vector of unit length.





	Parameters:	vector : 3 x m array


m column vectors







	Returns:	unitvector : 3 x m array


normalized unitvector(s) along axis==0.










Examples

>>> import nvector as nv
>>> nv.unit([[1],[1],[1]])
array([[ 0.57735027],
       [ 0.57735027],
       [ 0.57735027]])
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nvector.objects.FrameE


	
class nvector.objects.FrameE(a=None, f=None, name='WGS84', axes='e')[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/objects.py#L757-L900]

	Earth-fixed frame





	Parameters:	a: real scalar, default WGS-84 ellipsoid.


Semi-major axis of the Earth ellipsoid given in [m].




f: real scalar, default WGS-84 ellipsoid.


Flattening [no unit] of the Earth ellipsoid. If f==0 then spherical
Earth with radius a is used in stead of WGS-84.




name: string


defining the default ellipsoid.




axes: ‘e’ or ‘E’


defines axes orientation of E frame. Default is axes=’e’ which means
that the orientation of the axis is such that:
z-axis -> North Pole, x-axis -> Latitude=Longitude=0.











See also

FrameN, FrameL, FrameB



Notes

The frame is Earth-fixed (rotates and moves with the Earth) where the
origin coincides with Earth’s centre (geometrical centre of ellipsoid
model).


	
__init__(a=None, f=None, name='WGS84', axes='e')[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/objects.py#L786-L792]

	



Methods







	ECEFvector(*args,
  
    
    
    nvector.objects.FrameN
    
    

    
 
  
  

    
      
          
            
  
nvector.objects.FrameN


	
class nvector.objects.FrameN(position)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/objects.py#L903-L948]

	
North-East-Down frame






	Parameters:	position: ECEFvector, GeoPoint or Nvector object


position of the vehicle (B) which also defines the origin of the local
frame N. The origin is directly beneath or above the vehicle (B), at
Earth’s surface (surface of ellipsoid model).










Notes

The Cartesian frame is local and oriented North-East-Down, i.e.,
the x-axis points towards north, the y-axis points towards east (both are
horizontal), and the z-axis is pointing down.

When moving relative to the Earth, the frame rotates about its z-axis
to allow the x-axis to always point towards north. When getting close
to the poles this rotation rate will increase, being infinite at the
poles. The poles are thus singularities and the direction of the
x- and y-axes are not defined here. Hence, this coordinate frame is
NOT SUITABLE for general calculations.


	
__init__(position)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/objects.py#L937-L941]

	



Methods







	Pvector(pvector)
	


	__init__(position)
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nvector.objects.FrameL


	
class nvector.objects.FrameL(position, wander_azimuth=0)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/objects.py#L951-L993]

	Local level, Wander azimuth frame





	Parameters:	position: ECEFvector, GeoPoint or Nvector object


position of the vehicle (B) which also defines the origin of the local
frame L. The origin is directly beneath or above the vehicle (B), at
Earth’s surface (surface of ellipsoid model).




wander_azimuth: real scalar


Angle between the x-axis of L and the north direction.











See also

FrameE, FrameN, FrameB



Notes

The Cartesian frame is local and oriented Wander-azimuth-Down. This means
that the z-axis is pointing down. Initially, the x-axis points towards
north, and the y-axis points towards east, but as the vehicle moves they
are not rotating about the z-axis (their angular velocity relative to the
Earth has zero component along the z-axis).

(Note: Any initial horizontal direction of the x- and y-axes is valid
for L, but if the initial position is outside the poles, north and east
are usually chosen for convenience.)

The L-frame is equal to the N-frame except for the rotation about the
z-axis, which is always zero for this frame (relative to E). Hence, at
a given time, the only difference between the frames is an angle
between the x-axis of L and the north direction; this angle is called
the wander azimuth angle. The L-frame is well suited for general
calculations, as it is non-singular.


	
__init__(position, wander_azimuth=0)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/objects.py#L988-L993]

	



Methods







	Pvector(pvector)
	


	__init__(position[,
  
    
    
    nvector.objects.FrameB
    
    

    
 
  
  

    
      
          
            
  
nvector.objects.FrameB


	
class nvector.objects.FrameB(position, yaw=0, pitch=0, roll=0, degrees=False)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/objects.py#L996-L1047]

	
Body frame






	Parameters:	position: ECEFvector, GeoPoint or Nvector object



position of the vehicle’s reference point which also coincides with
the origin of the frame B.





	yaw, pitch, roll: real scalars

	defining the orientation of frame B in [deg] or [rad].



	degrees : bool

	if True yaw, pitch, roll are given in degrees otherwise in radians














Notes

The frame is fixed to the vehicle where the x-axis points forward, the
y-axis to the right (starboard) and the z-axis in the vehicle’s down
direction.


	
__init__(position, yaw=0, pitch=0, roll=0, degrees=False)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/objects.py#L1026-L1033]

	



Methods







	Pvector(pvector)
	


	__init__(position[,
  
    
    
    nvector.objects.ECEFvector
    
    

    
 
  
  

    
      
          
            
  
nvector.objects.ECEFvector


	
class nvector.objects.ECEFvector(pvector, frame=None)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/objects.py#L379-L485]

	
Geographical position given as Cartesian position vector in frame E






	Parameters:	pvector: 3 x n array



Cartesian position vector(s) [m] from E to B, decomposed in E.





	frame: FrameE object

	reference ellipsoid. The default ellipsoid model used is WGS84, but
other ellipsoids/spheres might be specified.














Notes

The position of B (typically body) relative to E (typically Earth) is
given into this function as p-vector, p_EB_E relative to the center of the
frame.


	
__init__(pvector, frame=None)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/objects.py#L407-L409]

	



Methods







	__init__(pvector[,
  
    
    
    nvector.objects.GeoPoint
    
    

    
 
  
  

    
      
          
            
  
nvector.objects.GeoPoint


	
class nvector.objects.GeoPoint(latitude, longitude, z=0, frame=None, degrees=False)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/objects.py#L27-L186]

	Geographical position given as latitude, longitude, depth in frame E





	Parameters:	latitude, longitude: real scalars or vectors of length n.


Geodetic latitude and longitude given in [rad or deg]




z: real scalar or vector of length n.


Depth(s) [m]  relative to the ellipsoid (depth = -height)




frame: FrameE object


reference ellipsoid. The default ellipsoid model used is WGS84, but
other ellipsoids/spheres might be specified.




degrees: bool


True if input are given in degrees otherwise radians are assumed.










Examples

Solve geodesic problems.

The following illustrates its use

>>> import nvector as nv
>>> wgs84 = nv.FrameE(name='WGS84')





The geodesic inverse problem

>>> positionA = wgs84.GeoPoint(-41.32, 174.81, degrees=True)
>>> positionB = wgs84.GeoPoint(40.96, -5.50, degrees=True)
>>> s12, az1, az2 = positionA.distance_and_azimuth(positionB, degrees=True)
>>> 's12 = {:5.2f}, az1 = {:5.2f}, az2 = {:5.2f}'.format(s12, az1, az2)
's12 = 19959679.27, az1 = 161.07, az2 = 18.83'





The geodesic direct problem

>>> positionA = wgs84.GeoPoint(40.6, -73.8, degrees=True)
>>> az1, distance = 45, 10000e3
>>> positionB, az2 = positionA.geo_point(distance, az1, degrees=True)
>>> lat2, lon2 = positionB.latitude_deg, positionB.longitude_deg
>>> msg = 'lat2 = {:5.2f}, lon2 = {:5.2f}, az2 = {:5.2f}'
>>> msg.format(lat2, lon2, az2)
'lat2 = 32.64, lon2 = 49.01, az2 = 140.37'






	
__init__(latitude, longitude, z=0, frame=None, degrees=False)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/objects.py#L72-L78]

	



Methods







	__init__(latitude,
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nvector.objects.Nvector


	
class nvector.objects.Nvector(normal, z=0, frame=None)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/objects.py#L201-L318]

	Geographical position given as n-vector and depth in frame E





	Parameters:	normal: 3 x n array


n-vector(s) [no unit] decomposed in E.




z: real scalar or vector of length n.


Depth(s) [m]  relative to the ellipsoid (depth = -height)




frame: FrameE object


reference ellipsoid. The default ellipsoid model used is WGS84, but
other ellipsoids/spheres might be specified.











See also

GeoPoint, ECEFvector, Pvector



Notes

The position of B (typically body) relative to E (typically Earth) is
given into this function as n-vector, n_EB_E and a depth, z relative to the
ellipsiod.


	
__init__(normal, z=0, frame=None)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/objects.py#L226-L229]

	



Methods







	__init__(normal[,
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nvector.objects.GeoPath


	
class nvector.objects.GeoPath(positionA, positionB)[source] [http://github.com/pbrod/nvector/blob/v0.5.2/nvector/objects.py#L488-L754]

	
Geographical path between two positions in Frame E






	Parameters:	positionA, positionB: Nvector, GeoPoint or ECEFvector objects


The path is defined by the line between position A and B, decomposed
in E.











	
__init__(positionA, positio